目 录

第一部分
年产2万台农业机械项目竣工环境保护验收监测报告表1
第二部分
山东江华机械制造有限公司年产2万台农业机械项目竣工环境保护验收意
见110
第三部分
其他需要说明事119
附件 1: 整改说
附件 2: 网上公示信息截图及截125
附件 3:建设项目环境影响评价信息平台项目登记截128

年产2万台农业机械项目 竣工环境保护验收监测报告表

建设单位;山东江华机械制造有限公司 编制单位;山东江华机械制造有限公司 二〇二〇年七月 建设单位法人代表; (签字)

编制单位法人代表; (签字)

项 目 负 责 人; 孙江华

填 表 人 : 孙江华

建设单位:山东江华机械制造有限公司 编制单位:山东江华机械制造有限公司

(盖章) (盖章)

电话; 18853085666 电话; 18853085666

邮编; 274300 邮编; 274300

地址; 单县经济开发区南樊路以南,东 地址; 单县经济开发区南樊路以南,东

环路以东 环路以东

表一

建设项目名称	年产2万台农业机械项目						
建设单位名称		山东江华机械制造	造有限公司]			
建设项目性质		□新建 ☑改扩建 □技改 □迁建					
建设地点	单县经济开发区南樊路以南, 东环路以东						
主要产品名称		农业机械	找				
设计生产能力		年产 2 万台农	业机械				
实际生产能力		年产 2 万台农	业机械				
建设项目环评时间	2020. 06	开工建设时间		2020. 7	7		
调试时间	2020. 6. 15–9. 14	验收现场监测时 间	2020. 07. 11-07. 12				
环评报告表	菏泽市行政审批	环评报告表	菏泽泰诺环境科技有限公司				
审批部门	服务局	编制单位	河洋祭品外境什找有限公司				
环保设施设计单	山东江华机械制	环保设施施工单	山东江华机械制造有限公司				
位	造有限公司	位		1 May 141 -	E II IN A 1		
投资总概算	56000 万	环保投资总概算	370	比例	0. 66%		
实际总概算	50000万	环保投资	383	比例	0. 77%		
	(1) 国务院/	令(2017)第 682 号	号《国务》	完关于修	改《建设项		
验收监测依据	目环境保护管理条	-例》的决定》(20	17.10);				
	(2) 国环规3	环评[2017]4 号《建	建设项目竣	注工环境 份	保护验收暂		
	行办法》(2017.1	11);					
	(3)《建设》	项目竣工环境保护等	金收技术技	皆南 污染	影响类》		
	(4) 《山东》	工华机械制造有限么	公司年产2	2万台农	业机械项目		
	环境影响报告表》(2020.6)						
	(5) 《关于山东江华机械制造有限公司年产2万台农业机械						
	项目环境影响报告	表的批复》(单行	审投【20	20 🕽 154	号)		
	(6) 委托书						

1. 废水: 废水排放执行《污水排入城镇下水道水质标准》(GB/T 31962-2015) B 等级标准, 具体数值见表 1-1。

表 1-1 污水排入城镇下水道水质标准

及1177水研入 城 族「水屯水灰州华					
项目名称	最高允许浓度				
COD	500mg/L				
BOD_5	350mg/L				
悬浮物 (SS)	400mg/L				
氨氮	45mg/L				
рН	6. 5-9. 5				
总锌	5 mg/L				
氟化物	20 mg/L				
阴离子表面活性剂 (LAS)	20 mg/L				

验收监测评价标准、标号、级别、限值

2. 废气:

山东省《区域性大气污染物综合排放标准》(DB37/2376-2019) 表 1 中"重点控制区"的排放浓度限值($SO_250~mg/m^3$ 、 $NOx100~mg/m^3$ 、颗粒物 $10~mg/m^3$)。

表 1-2 山东省区域性大气污染物综合排放标准

污染物	重点控制区			
11 X-W	浓度 (mg/m³)			
颗粒物	10			
SO ₂	50			
NOx	100			
标准来源	山东省《区域性大气污染物综合排放标准》 (DB37/2376-2019)			

山东省《工业炉窑大气污染物综合排放标准》

(DB37/2375-2019) 中表 1 相关要求, 山东省《锅炉大气污染物综合排放标准》 (DB37/2374-2018) 表 2 "重点控制区"排放标准 (SO₂50mg/m³、颗粒物 10mg/m³、NO_x100mg/m³) 以及菏泽市人民政府办公室文件(菏政办发[2019]19 号)菏泽市人民政府办公室关于印发《菏泽市落实(京津冀及周边地区 2019-2020 年秋冬季大气污染综合治理攻坚行动方案)实施方案》的通知(燃气锅炉氮氧化物排放浓度不高于 50mg/m³)要求。

无组织颗粒物执行《大气污染物综合排放标准》 (GB16297-1996) 表 2 中无组织颗粒物排放小于 1. 0mg/m³。

VOCs、甲苯和二甲苯执行山东省《挥发性有机物排放标准——第5部分:表面涂装行业》(DB37/2801.5-2018)表2中"专用设备制造业"标准和表3中无组织厂界标准,即VOCs最高允许排放速率≤2.4 kg/h、最高允许排放浓度70mg/m³,无组织厂界浓度限值2.0mg/m³。甲苯最高允许排放速率≤0.2 kg/h、最高允许排放浓度5mg/m³,无组织厂界浓度限值0.2mg/m³。二甲苯最高允许排放速率≤0.8kg/h、最高允许排放浓度15mg/m³,无组织厂界浓度限值0.2mg/m³。二甲苯最高允许排放速率≤0.8kg/h、最高允许排放浓度15mg/m³,无组织厂界浓度限值0.2mg/m³。

3、固废

一般固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及修改单要求。

危险废物执行《危险废物贮存污染控制标准》(GB18597-2001) 及修改单(环境保护部公告 2013 年第 36 号)中的相关要求。

工程建设内容:

本项目属于改扩建。本项目主要建筑工程为:生产车间、仓库、办公室及其 他生产生活辅助设施。工程建设内容及与环评建设内容对比见下表 2-1。

表 2-1 工程建设内容及与环评建设内容对比一览表

序号	工程类别	I.	程名称	数量	环评中建设内容	实际建设内容
		1#生产车间		1座	钢架结构,建筑面积 16000m² (机加工车间)	同环评
		2#4	三产车间	1座	钢架结构,建筑面积 16000m² (切割下料车间)	同环评
		3#4	三产车间	1座	钢架结构,建筑面积 15000m² (焊接、涂装车间)	同环评
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4#4	三产车间	1座	钢架结构,建筑面积 11000m² (西侧一部分,用于装配)	同环评
1	主体工程	喷漆	底漆间	1座	容积 134 m³, 引风量 20000m ³/h	同环评
		流水 线(3#	底漆烤漆	1座	容积 168m³, 引风量 22000m³ /h	同环评
		生产	面漆间	1座	容积 169m³, 引风量 23000m³ /h	同环评
			面漆烤漆 间	1座	容积 302m³, 引风量 25000m³ /h	同环评
		喷塑流水线		1条	3#生产车间内部	本次暂不验收
	V H -	力	小公楼	1座	砖混结构,建筑面积 7000 平方米	同环评
2	公用工程	宿	宿舍楼		砖混结构,建筑面积 3000 平方米	同环评
		事故水池		事故水池 1座 50m³		同环评
		隔音	降噪设施	3套	隔声、减震	同环评
3	环保工 程	抛丸房	受气处理系 统	1套	脉冲袋式除尘器装置	同环评
	任	打磨房	受气处理系 统	1套	/	打磨柜自带除尘器收 集后通过 15 米高排气 筒排放

	焊接烟尘处理装 置	1套	中央集尘+脉冲滤筒除尘装 置	实际为3套中央集尘+ 脉冲滤筒除尘装置
	切割烟尘处理装 置	1套	中央集尘+脉冲滤筒除尘装 置	实际为通过激光切割 机自带滤袋进行处理
	喷漆烤漆废气处 理系统	1套	瓦楞纸+滤棉吸附+活性炭吸 附浓缩+催化燃烧装置	同环评
	喷塑颗粒物处理 装置	1套	脉冲滤筒+袋式除尘器	本次不验收
	喷塑固化废气处 理装置	1套	集气罩+低温等离子+活性炭 吸附装置	本次不验收
	前处理废水处理 装置	1套	均和池+化学沉淀池+气浮池 +过滤+活性炭吸附+PH 调节 池	同环评
	表面处理预脱脂 及水分烘干工序	1套	15m 高排气筒	同环评
	喷漆前打磨粉尘 处理系	1套	干式滤筒除尘器	实际为2个干式滤筒除 尘器
	化粪池	1座	依托现有	同环评
	一般固废堆场	1处	新建	同环评
	危废储存间	1处	新建	同环评

表 2-2 主要生产设备一览表

序号	设备名称	型号规格	环评数量(台/套)	实际数量	备注
1	光纤激光切割机	TQL-MFC1000-BJ6015F	1	同环评	下料车间
2	光纤激光切割机	TQL-F1000-6020B-N	1	同环评	下料车间
3	光纤激光切割机	TQL-MFC500W-3015	1	同环评	下料车间
4	光纤激光切割机	G6025MF	1	同环评	下料车间
5	数控切割机	ZZ-1530H	1	同环评	下料车间
6	数控闸式剪板机	HGSK-16*3050	1	同环评	下料车间
7	数控折弯机	PBC-220/6200-3V	1	同环评	下料车间
8	数控板料折弯机	PBH-110/3100	1	同环评	下料车间
9	数控板料折弯机	PBH-250/3100	1	同环评	下料车间
10	液压板料数控折弯机	WE67K-200/3200	1	同环评	下料车间

11	上辊万能式卷板机	W11S-8*2500	1	同环评	下料车间
12	卷圆机	4* 2000	1	同环评	下料车间
13	卷(平)板机	W11-6*1600	1	同环评	下料车间
14	液压弯管机	WGJ-1V-HY	1	同环评	下料车间
15	摇臂钻床	D50e	1	同环评	下料车间
16	立式钻床1号	JZ-25	1	同环评	下料车间
17	台式钻攻两用机1号	ZS4120	1	同环评	下料车间
18	台式钻攻两用机2号	ZS4120	1	同环评	下料车间
19	摇臂式攻丝机	SH16	1	同环评	下料车间
20	落地式砂轮机	M3025	1	同环评	下料车间
21	开式固定台压力机 3 号	JH21-45	1	同环评	下料车间
22	开式固定台压力机 2 号	JH21-80	1	同环评	下料车间
23	开式固定台压力机 1 号	JH21-200	1	同环评	下料车间
24	四柱式万能液压机	YX32-315	1	同环评	下料车间
25	校平机	6*2000	1	同环评	下料车间
26	金属带锯床	GS 4028-L	1	同环评	下料车间
27	得力数控带锯床	GZK4232C	1	同环评	下料车间
28	型材切割机	J3G3400	1	同环评	下料车间
29	内燃平衡重式叉车	CPC	1	同环评	下料车间
30	行车	10T	6	同环评	下料车间
31	冲剪机	QA35-12	1	同环评	下料车间
32	捷豹螺杆空压机	ZLS50Hi+/10	1	同环评	下料车间
33	德斯兰螺杆空压机	CS-22	1	同环评	下料车间
34	冷冻式空气干燥机	ED-50FC	1	同环评	下料车间
35	压力罐	1立方	2	同环评	下料车间
36	型材放置架	1200*800	200	同环评	下料车间
37	物料盒	600*400	200	同环评	下料车间

38 39 40	模具放置架 模具放置架 型材放置架	3000*800 	2	同环评	下料车间
		4000*600			
40	刑材站罢恕		2	同环评	下料车间
	至	30M*5M	1	同环评	下料车间
41	型材放置架	22M*5M	1	同环评	下料车间
42	型材放置架	15M*5M	1	同环评	下料车间
43	立式型材放置架		19	同环评	下料车间
44	钢板放置架	30M*6M	1	同环评	下料车间
45	钢板放置架	22M*6M	1	同环评	下料车间
46	光纤激光切割机	6000W	1	同环评	下料车间
47	光纤激光切管机	3000W	1	同环评	下料车间
48	数控立式车床	GDC900	1	同环评	机加工车间
49	数控立式车床	GDC900	1	同环评	机加工车间
50	数控立式车床	GDC900	1	同环评	机加工车间
51	立式加工中心	1060	1	同环评	机加工车间
52	四轴加工中心	VMC-1060L	1	同环评	机加工车间
53	立式加工中心	V10L	1	同环评	机加工车间
54	立式加工中心	VB-715A	1	同环评	机加工车间
55	立式加工中心	VMC-1060L	1	同环评	机加工车间
56	立式加工中心	YHMC V10L	1	同环评	机加工车间
57	立式加工中心	V10L	1	同环评	机加工车间
58	立式加工中心	V10L	1	同环评	机加工车间
59	立式加工中心	VH1060	1	同环评	机加工车间
60	立式加工中心	YHMC V10L	1	同环评	机加工车间
61	立式加工中心	YHMC V10Z	1	同环评	机加工车间
62	立式加工中心	YHMC V10L	1	同环评	机加工车间
63	立式加工中心	YHMC V10L	1	同环评	机加工车间
64	立式加工中心	YHMC V10L	1	同环评	机加工车间
65	立式加工中心	YHMC V10L	1	同环评	机加工车间
66	双柱铣床	X2540	1	同环评	机加工车间

67	立式加工中心	VH1060	1	同环评	机加工车间
68	立式加工中心	YHMC V10L	1	同环评	机加工车间
69	立式加工中心	YHMC V10L	1	同环评	机加工车间
70	立式加工中心	VMC-1060L	1	同环评	机加工车间
71	立式加工中心	FVP-1000A	1	同环评	机加工车间
72	立式加工中心	THVT1060	1	同环评	机加工车间
73	立式加工中心	FVP-1000A	1	同环评	机加工车间
74	立式加工中心	YHMC-V10L	1	同环评	机加工车间
75	立式加工中心	VH1060	1	同环评	机加工车间
76	立式加工中心	YHMC-V10L	1	同环评	机加工车间
77	立式加工中心	V10L	1	同环评	机加工车间
78	双柱铣床	X2540	1	同环评	机加工车间
79	立式加工中心	YHMC V10L	1	同环评	机加工车间
80	双柱铣床	X2540	1	同环评	机加工车间
81	立式加工中心	V10L	1	同环评	机加工车间
82	立式加工中心	FVP1000A	1	同环评	机加工车间
83	立式加工中心	1060	1	同环评	机加工车间
84	立式加工中心		1	同环评	机加工车间
85	立式加工中心	YHMC-V10L	1	同环评	机加工车间
86	立式加工中心	YHMC V10L	1	同环评	机加工车间
87	立式加工中心	YHMC V10L	1	同环评	机加工车间
88	加工中心	VMC850B	1	同环评	机加工车间
89	立式加工中心	V10L	1	同环评	机加工车间
90	立式加工中心	THVT1060	1	同环评	机加工车间
91	小两行专机		1	同环评	机加工车间
92	立式加工中心	FVP-1000A	1	同环评	机加工车间
93	立式加工中心	FVP-1000A	1	同环评	机加工车间
94	专机		1	同环评	机加工车间

95	立式加工中心	YHMC V10L	1	同环评	机加工车间
30					
96	立式加工中心	V10L	1	同环评	机加工车间
97	立式加工中心	VMC-1060L	1	同环评	机加工车间
98	立式加工中心		1	同环评	机加工车间
99	立式加工中心	VM745	1	同环评	机加工车间
100	小两行专机		1	同环评	机加工车间
101	小两行专机		1	同环评	机加工车间
102	普车	CA6140A	1	同环评	机加工车间
103	专机		1	同环评	机加工车间
104	小两行专机		1	同环评	机加工车间
105	普通车床	CW6163C	1	同环评	机加工车间
106	数控车床	CAK4085NI	1	同环评	机加工车间
107	CNC 车床	C400K	1	同环评	机加工车间
108	数控车床	C6085	1	同环评	机加工车间
109	CNC 车床	C400K	1	同环评	机加工车间
110	数控车床	C6085	1	同环评	机加工车间
111	数控车床	C400K	1	同环评	机加工车间
112	数控车床	C6085	1	同环评	机加工车间
113	数控车床	C400K	1	同环评	机加工车间
114	数控车床	C6085	1	同环评	机加工车间
115	CNC 车床	C400K	1	同环评	机加工车间
116	数控车床	C6085	1	同环评	机加工车间
117	CNC 车床	C400K	1	同环评	机加工车间
118	数控车床	C6085	1	同环评	机加工车间
119	数控仪表车	0640-L	1	同环评	机加工车间
120	数控车床	SK50P/2000	1	同环评	机加工车间
121	数控仪表车	0640-L	1	同环评	机加工车间
122	数控车床	SK50P/3000	1	同环评	机加工车间

123	电火花数控线切割机	DK77 40	1	同环评	机加工车间
124	半自动花键铣	YB6020	1	同环评	机加工车间
125	电火花数控线切割机	DK77 40	1	同环评	机加工车间
126	万能外圆磨床	M1432B	1	同环评	机加工车间
127	普通卧式轴矩台平面 磨床	М7130Н	1	同环评	机加工车间
128	三坐标测量机	inspector 08*12*06	1	同环评	机加工车间
129	三坐标测量机	global 07*10*07	1	同环评	机加工车间
130	龙门加工中心	HTM-3216G	1	同环评	机加工车间
131	卧轴距台平面磨床	M7140H	1	同环评	机加工车间
132	插床	B5032E	1	同环评	机加工车间
133	立式升降台铣床	XKA5040	1	同环评	机加工车间
134	外圆磨床	ME1332A	1	同环评	机加工车间
135	磨合台		4	同环评	机加工装配车间
136	装配线		2	同环评	机加工装配车间
137	气液压力机		11	同环评	机加工装配车间
138	自动通过式清洗机	XC-21	1	同环评	机加工装配车间
139	缠绕包装机	TP1650F-L	1	同环评	机加工装配车间
140	捷豹螺杆空压机	ZLS50Hi+/10	1	同环评	机加工装配车间
141	德斯兰螺杆空压机	CS-37	1	同环评	机加工装配车间
142	冷冻式空气干燥机	ED-50FC	1	同环评	机加工装配车间
143	压力罐	1立方	2	同环评	机加工装配车间
144	逆变式气体保护焊机	KE-500N	4	同环评	焊接工序
145	逆变式气体保护焊机	NK-500N	1	同环评	焊接工序
146	逆变式气体保护焊机	NB-250LB	4	同环评	焊接工序
147	逆变式气体保护焊机	NB-350IGBT	8	同环评	焊接工序
148	逆变式气体保护焊机	NBC-500	1	同环评	焊接工序
149	逆变式气体保护焊机	NBC-400	1	同环评	焊接工序

150	逆变式气体保护焊机	NBC-400	1	同环评	焊接工序
151	逆变式气体保护焊机	NBC-400	1	同环评	焊接工序
152	逆变式气体保护焊机	NBC-350	2	同环评	焊接工序
153	空气等离子切割机	LGK-100MA	1	同环评	焊接工序
154	空气压缩机	V-1. 05/12. 5	1	同环评	焊接工序
155	内燃平衡重式叉车	CPD30-AC2	1	同环评	焊接工序
156	行车	5 吨	2	同环评	焊接工序
157	行车	10 吨	2	同环评	焊接工序
158	吊钩式抛丸机	QSK-3000	1	同环评	涂装车间
159	内燃平衡重式叉车	CPD30-AC2	1	同环评	涂装车间
160	行车		2	同环评	涂装车间
161	捷豹螺杆空气压缩机	ZLS50Hi+/10	1	同环评	涂装车间
162	捷豹螺杆空气压缩机	ZLS50Hi+/10	1	同环评	涂装车间
163	捷豹冷冻式空气干燥 机	ED-50FC	1	同环评	涂装车间
164	储气罐	217010P12	1	同环评	涂装车间
165	储气罐	217010P12	2	同环评	涂装车间
166	喷塑生产线	配套1台130万大可燃 烧机和1台100万大卡 燃气燃烧机	1	暂不验收	涂装车间(燃烧器 均采用低氮燃烧 器)
167	喷漆前处理生产线	脱脂、清洗、陶化、烘干、配套2台25万大 卡燃气燃烧机脱水烘 干配套1台50万大卡 燃气燃烧机	1	同环评	涂装车间(燃烧器 均采用低氮燃烧 器)
168	喷漆烤漆流水线	配套1个底漆间、底漆烘干间、面漆间、面漆烘干间。底漆烘干配套1台50万大卡燃气燃烧机,面漆烘干配套1台100万大卡燃气燃烧机	1	同环评	涂装车间(燃烧器 均采用低氮燃烧 器)
169	蓄电池平衡重式叉车	CPD	1	同环评	装配车间
170	蓄电池平衡重式叉车	CPD	1	同环评	装配车间

171	扒胎机	U-600	1	同环评	装配车间
172	扒胎机	JOLLY (A)	1	同环评	 装配车间
	,	JULLI (II)			
173	试车台		2	同环评	装配车间
174	货架		15	同环评	装配车间
175	标件车		12	同环评	装配车间
176	整机装配小车		21	同环评	装配车间
177	工作平台		4	同环评	装配车间
178	捡拾器工作台		1	同环评	装配车间
179	液压机		4	同环评	装配车间
180	铁平板		101	同环评	装配车间
181	塑料周转筐		140	同环评	装配车间
182	打捆机装车台		8	同环评	装配车间
183	行车		7	同环评	装配车间
184	光纤激光打标机	HG-20W-1A	1	同环评	质检部
185	布氏硬度仪	HB-3000B	1	同环评	质检部
186	便携式微控控制箱	HG-WKQ1508	1	同环评	质检部
187	切割工序中央集尘+ 脉冲滤筒除尘器	风机风量为 8000m³/h	1	实际为切 割机自带 除尘装置	环保设备
188	焊接工序中央集尘+ 脉冲滤筒除尘器	风机风量为 8000m³/h	1	同环评	环保设备
189	抛丸脉冲袋式除尘器	风机风量为 15000 m³ /h	1	同环评	环保设备
190	喷塑脉冲滤筒+袋式 除尘器	风量风量 2000m³/h	1	同环评	环保设备
191	固化废气集气罩+低 温等离子+活性炭吸 附装置	风量风量 2000m³/h	1	同环评	环保设备
192	喷漆前打磨粉尘干式 滤筒除尘器	风量风量 2000m³/h	1	同环评	环保设备
193	喷漆烤漆废气瓦楞纸 +过滤棉+活性炭吸附 浓缩+催化燃烧装置	风量风量 90000m³/h	1	同环评	环保设备

	194	厂区污水处理站	处理能力 5m³/d	1	同环评	环保设备
--	-----	---------	------------	---	-----	------

原辅材料消耗及水平衡:

本项目主要原料及能源实际消耗与环评对比见表 2-3。

表 2-3 主要原料及能源实际消耗与环评对比一览表

序号	名称	单位	数量	备注
		拖拉机组装线		
1	柴油机	台	11500	外购成品
2	变速箱	台	11500	外购成品
3	滚针总成	套	11500	外购成品
4	动力输出轴	个	11500	外购成品
5	离合摇臂合件	套	11500	外购成品
6	制动摇臂合件	套	11500	外购成品
7	前驱动桥分总成	套	11500	外购成品
8	转向盘总成	套	11500	外购成品
9	转向管柱总成	套	11500	外购成品
10	转向器及阀块总 成	套	11500	外购成品
11	仪表台总成	套	11500	外购成品
12	提升油缸总成	套	23000	外购成品
13	多路阀总成	套	11500	外购成品
14	离合拨叉	个	23000	外购成品
15	爬行档摇臂	个	11500	外购成品
16	减震块	个	23000	外购成品
17	转向泵总成	套	11500	外购成品
18	蓄电池总成	套	11500	外购成品
19	主变速操纵传递杆	个	11500	外购成品
20	提升杆总成	套	23000	外购成品
21	上拉杆总成	套	11500	外购成品

22	下拉杆总成	套	23000	外购成品
23	主油箱总成	套	11500	外购成品
24	副油箱总成	套	11500	外购成品
25	轮毂	个	46000	外购成品
26	发动机总成	套	11500	外购成品
27	前支座总成	套	11500	外购成品
28	后支座总成	套	11500	外购成品
29	油尺总成	套	11500	外购成品
30	密封衬座总成	套	11500	外购成品
31	驾驶室装配总成	套	11500	外购成品
32	启动继电器	个	11500	外购成品
33	发动机线束总成	套	11500	外购成品
34	车身线束总成	套	11500	外购成品
35	前灯线束总成	套	11500	外购成品
36	后灯线束总成	套	11500	外购成品
37	电源总线	个	11500	外购成品
38	组合仪表总成	套	11500	外购成品
39	驻车制动开关	个	11500	外购成品
40	散热器装配总成	套	11500	外购成品
41	制动泵总成	套	11500	外购成品
42	油量传感器	个	11500	外购成品
43	制动器油箱总成	套	11500	外购成品
44	滤油器总成	套	11500	外购成品
45	回油滤油器总成	套	11500	外购成品
46	转向油箱及呼吸 器总成	套	11500	外购成品
47	喇叭总成	套	11500	外购成品
48	座椅总成	套	11500	外购成品
49	工具箱供货总成	套	11500	外购成品

50	油塞总成	套	11500	外购成品				
51	脚油门总成	套	11500	外购成品				
52	机罩总成	套	11500	外购成品				
53	空气滤清系总成	套	11500	外购成品				
54	手油门总成	套	11500	外购成品				
55	机罩密封装配总 成	套	11500	外购成品				
56	输油管总成	套	11500	外购成品				
57	机罩锁操纵总成	套	11500	外购成品				
58	排气系总成(消音器)	套	11500	外购成品				
59	制动器总成	套	11500	外购成品				
60	手制动操纵把手 总成	套	11500	外购成品				
	打捆机系列组装生产线							
1	搂齿	件	2000	外购				
2	扭力弹簧	件	40000	外购				
3	刹车盘	套	500	外购				
4	传动轴 VS-70 广角	套	500	外购				
5	打结器总成	套	1000	外购				
6	自润滑轴承	件	1000	外购				
7	磁感应数显电子 计数器 ZX-5D	套	500	外购				
8	打结器轴	件	500	外购				
8	扇面齿轮	件	500	外购				
10	轮辋 (9.15-3)	个	1000	外购				
11	轮胎(10.00-15)	个	1000	外购				
12	导轨	个	2000	外购				
13	润滑系统	套	500	外购				
14	摄像头	套	500	外购				

15	显示器	套	500	外购
16	安全离合器	套	500	外购
17	传动箱	套	500	外购
18	减速变速箱	套	500	外购
19	飞轮	件	500	外购
20	防尘橡胶板	件	2000	外购
21	机架焊合	套	500	自制
22	草捆阻止器合件	套	1000	自制
23	牵引臂焊合	套	500	自制
24	线箱主体焊合	套	1000	自制
25	卡箍	件	3000	自制
	多功能	谷物收获机	 生产线	
1	发动机	套	1000	外购
2	行走变速箱	套	1000	外购
3	转向桥	套	1000	外购
4	捡拾器总成	套	1000	外购
5	喂入搅龙	套	1000	外购
6	输送链耙总成	套	1000	外购
7	脱粒滚筒	个	1000	外购
8	滚筒驱动箱体	套	1000	外购
9	振动筛总成	套	1000	外购
10	轮胎	个	4000	外购
11	轮辋	个	4000	外购
12	清选风机总成	套	1000	外购
13	驾驶室总成	套	1000	外购
14	座椅	套	1000	外购
15	操纵件总成	套	1000	外购
16	线束	套	1000	外购
<u> </u>				

17	柴油箱	套	1000	外购				
18	液压油箱	套	1000	外购				
19	齿轮泵	个	1000	外购				
20	柱塞泵	^	1000	外购				
21	马达	↑	1000	外购				
22	油管	套	1000	外购				
23	转向器	↑	1000	外购				
24	方向机	↑	1000	外购				
25	液压油缸	↑	4000	外购				
26	工作灯	个	4000	外购				
27	前照灯	^	2000	外购				
28	鸣笛喇叭	个	1000	外购				
29	手油门	↑	1000	外购				
30	脚油门	^	1000	外购				
31	中间轴	↑	1000	外购				
32	割台主传动轴	^	1000	外购				
33	空气滤清器	个	1000	外购				
34	液压滤清器	↑	1000	外购				
35	蓄电池	↑	1000	外购				
36	消音器	↑	1000	外购				
	花生收获机生产线							
1	发动机	套	1000	外购				
2	行走变速箱	套	1000	外购				
3	转向桥	套	1000	外购				
4	捡拾器总成	套	1000	外购				
5	喂入搅龙	套	1000	外购				
6	输送链耙总成	套	1000	外购				
7	脱粒滚筒	↑	1000	外购				

套套套套套套套套	1000 1000 4000 4000 1000 1000 1000 1000	外购
个个套套套套套套套	4000 4000 1000 1000 1000 1000 1000	外购 外购 外购 外购 外购
个套套套套套套套	4000 1000 1000 1000 1000 1000	外购 外购 外购 外购 外购
套套套套套套套	1000 1000 1000 1000 1000	外购 外购 外购 外购
套套套套套套	1000 1000 1000 1000	外购 外购 外购 外购
套套套套套	1000 1000 1000 1000	外购 外购 外购
套套套套	1000 1000 1000	外购外购
套套套	1000	外购
套套套	1000	
套套		外购
套	1000	
		外购
	1000	外购
个	1000	外购
个	1000	外购
个	1000	外购
套	1000	外购
个	1000	外购
个	1000	外购
个	4000	外购
个	4000	外购
个	2000	外购
个	1000	外购
l	1000	
	1 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 7 8 8 8 8 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>↑ 1000 ↑ 1000 ↑ 4000 ↑ 4000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000</td></t<>	↑ 1000 ↑ 1000 ↑ 4000 ↑ 4000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000 ↑ 1000

36	蓄电池	个	1000	外购
37	消音器	个	1000	外购
	玉》	米收获机生产		
1	座椅	套	4000	外购
2	散热器总成	套	4000	外购
3	轮胎	套	16000	外购
4	轮辋	套	16000	外购
5	风机带轮	套	4000	外购
6	风机主动带轮	套	4000	外购
7	吸风机皮带轮	个	4000	外购
8	中间轴皮带轮	套	4000	外购
9	发动机	套	4000	外购
10	油箱拉带焊合	个	8000	外购
11	燃油箱总成	个	4000	外购
12	液压油箱总成	套	4000	外购
13	拉带焊合	套	8000	外购
14	减震垫座	套	32000	外购
15	盖板	套	4000	外购
16	前筛板	套	4000	外购
17	后筛板	套	4000	外购
18	右上围板	套	4000	外购
19	上排气管焊合	个	4000	外购
20	消音器焊合	个	4000	外购
21	空气滤清器总成	个	4000	外购
22	割台搅龙焊合	套	4000	外购
23	左轴头焊合	个	4000	外购
24	右轴头焊合	个	4000	外购
25	排草搅龙焊合*2	套	8000	外购

26	剔草刀	套	24000	外购
27	驾驶室	套	4000	外购
		农机具生产线		
1	肥箱总成	 套	4000	外购
2	种箱总成	套	8000	外购
3	开沟器总成	套	16000	外购
4	下肥管	<u></u>	8000	外购
5	肥箱手轮	<u></u>	4000	外购
6	排肥器	套	16000	外购
7	种箱手轮	套	4000	外购
8	点播器总成	套	16000	外购
9	传动轴	↑	2000	外购
10	六角轴	↑	4000	外购
11	镇压弹簧	↑	8000	外购
12	三通变速箱	↑	4000	外购
13	换挡总成	↑	4000	外购
14	镇压轮总成	套	8000	外购
15	其他零配件	套	100000	外购
		其他原辅材料		
1	钢材	t/a	8000	外购
2	玻璃	t/a	100	外购
6	焊丝	t/a	15	外购成品
7	CO ₂	瓶	100	外购 (瓶装200kg)
8	氧气	瓶	50	外购 (瓶装170kg)
9	丙烷	瓶	100	外购(瓶装30kg)
10	机油	t/a	1.5	外购(桶装50kg)
11	切削液	t/a	3.0	外购(桶装50kg)
12	油锈漆	t/a	3.9	桶装(25kg/桶)
13	稀释剂	t/a	1. 95	桶装(25kg/桶)

14	水性漆	t/a	6. 23	桶装(25kg/桶)
15	聚酯塑粉	t/a	0	袋装(25kg/袋)
16	脱脂剂	t/a	0. 33	桶装(25kg/桶)
17	活性剂	t/a	0.03	桶装(25kg/桶)
18	陶化液	t/a	0.45	桶装(25kg/桶)
19	水	m³/a	4566	当地自来水公司
20	电	万kwh	100	供电公司
21	天燃气	万m³/a	134	管道天然气

本项目产品方案表

项目	名称	年产量	单位	备注
1	打捆机系列	500	台	厂内喷漆部位部分外壳、框架 等
2	拖拉机系列(中小型)	10000	台	厂内喷漆部位包括:油箱支架、 加强板、变速箱、后桥
3	拖拉机系列 (大型)	1500	台	厂内喷漆部位包括:油箱支架、 加强板、变速箱、后桥
4	玉米收获机	4000	台	厂内喷漆部位外壳、框架等
5	花生收获机	1000	台	厂内喷漆部位外壳、框架等
6	多功能轮式谷物联合 收获机	1000	台	厂内喷漆部位外壳、框架等
7	农机具	2000	台	厂内喷漆部位外壳、框架等

本项目给排水情况:

1. 给排水

(1) 给水

本工程用水由单县市政自来水公司供给,项目用水主要包括生产用水和生活 用水。

生产用水:水性漆调漆用水,拟建项目部分钢结构根据客户要求需要喷涂水性漆,水性漆在喷涂时需添加水进行调和,按照水性漆:水=4:3的比例进行调和,根据建设单位提供数据,项目水性漆年消耗量约为6.23t/a,则本项目调漆用水量为5.0m³/a,均为新鲜水。

本项目脱脂除锈池体内水分经蒸发消耗后定期由新鲜水进行补充,根据估算,本项目循环水池年需补充新鲜水 186m³,正常情况下每年排放一次,每年排放 6m³/a,委托有资质单位处理。

脱脂除锈清洗用水:项目脱脂除锈清洗水池采用逆流清洗,年用水量 450 m ³/a。

陶化工序处理前和处理后均需要用纯水进行逆流清洗,根据企业提供资料, 纯水用量为 640m³/a。制纯水设备为反渗透装置制纯水效率约为 80%,则新鲜水 用量为 800m³/a。

本项目陶化池体内水分经蒸发消耗后定期由新鲜水进行补充,根据估算,本项目循环水池年需补充新鲜水 125m³,正常情况下每年排放一次,每年排放 5m³/a,委托有资质单位处理。

生活用水主要来自员工餐饮、洗涮及冲厕用水,职工定员 100 人,年工作 300 天,生活用水量按 100L/人·d 计,则生活用水量为 3000m³/a。

(2) 排水

厂区排水采用雨污分流制,雨水经管网收集后外排场外雨水沟。

项目水性漆调漆用水全部挥发不外排。

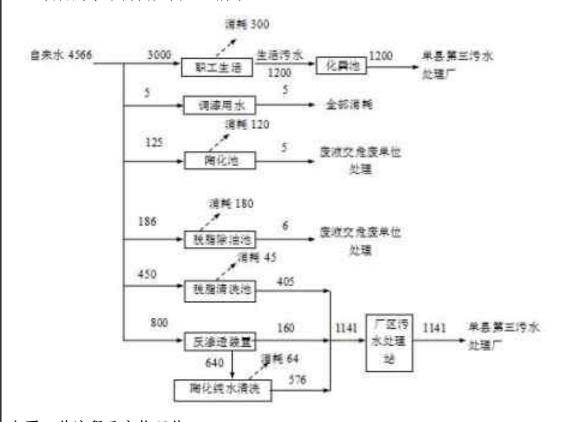
脱脂清洗用水量为 450 m³/a,废水产生系数按 90%,则废水产生量为 405 m³/a。进入厂区污水处理站进行集中处理,处理后排入单具第三污水处理厂

制纯水装置废水产生量为 160 m³/a, 进入厂区污水处理站进行集中处理, 处理后排入单县第三污水处理厂。

陶化清洗用水量为 640 m³/a,废水产生系数按 90%,则废水产生量为 576 m³/a。进入厂区污水处理站进行集中处理,处理后排入单县第三污水处理厂。

职工生活污水,产生量按生活用水量的80%计,则生活污水产生量约为2400m³/a,生活污水送至化粪池预处理后经污水管网排入单县第三污水处理厂。

脱脂除锈废液,每年排放一次,每次排放6m³,每年排放6m³。脱脂除油废液属于HW17表面处理废物(废物代码336-064-17),交由有资质单位处理。


陶化废液,每年排放一次,每次排放5m3,每年排放5m3。陶化废液属于HW17

表面处理废物 (废物代码 336-064-17), 交由有资质单位处理。

本项目生产废水产生量为1141 m³/a,经自建污水处理站处理达标后排入单县第三污水处理厂深度处理。废水产生量较少,且水质经处理后能满足排放要求。

(3) 用水平衡图

项目用水平衡图如图 2-1 所示

主要工艺流程及产物环节

1. 工艺流程及产污环节

本项目产品具体生产工艺流程及产污环节详见图 2-2。

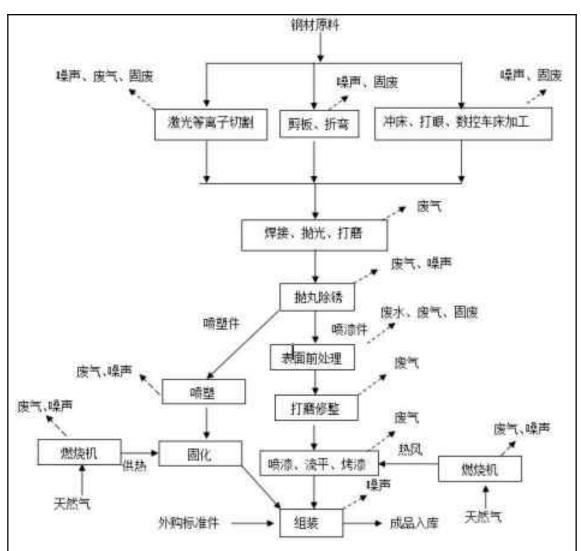


图 2-2 农业机械生产工艺流程及产污环节图

本项目主要产品为农业机械,包括拖拉机、收获机、打捆机等,项目主要为厂内进行机加工组装,利用钢板切割焊接制造外壳及框架,其余零部件均为外购成品。

其主要工艺简述如下:

外购钢板,角铁等进行切割下料。其生产过程为通过行吊将板材进行切割。 然后打孔等机械加工工序,将大件的钢板、角铁、不锈钢板等分割成小件。然后 利用行吊将零部件运输至焊接工位。本项目根据实际生产图纸对构件进行焊接。 焊接后的产品,再进行打磨、数控加工。

经加工好的零部件,通过抛丸除锈等工序后,一部分进入喷塑生产线进行喷塑,本项目喷塑流水线位于 3#车间的北侧,采用人工静电喷涂,通过喷塑枪将塑粉涂覆在构件表面,利用静电将其粘附在金属表面,然后通过预设的 180℃固

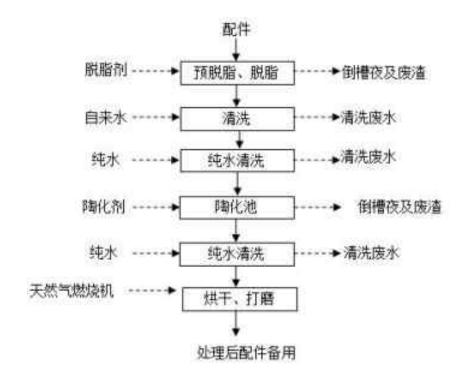
化炉进行固化,时间为15分钟左右。

一部分喷漆构件需要先经表面前处理工序清除构件表面的油脂,然后进行陶化。(表面处理详细工艺流程分析见图 3)。陶化后对金属表面进行修整打磨,然后进入喷漆工序。

经表面处理后需要进行喷漆作业的构件运输至喷漆车间内,项目喷漆分为底漆和面漆。

底漆喷涂:本项目底漆采用油性漆,底漆喷漆车间位于 3#生产车间的东南角的位置,本项目设置密闭式喷漆烤漆间,设置 1~2 名员工进行喷涂,本项目喷漆房采用干式喷漆房,喷漆过程中产生的颗粒物经瓦楞纸+过滤棉进行吸附,喷漆时外部空气经过初级过滤网过滤后由风机送到房顶,再经过顶部过滤网二次过滤净化后进入房内。房内空气采用全降式,以 0.2-0.3m/s 的速度向下流动,使喷漆后的漆雾微粒不能在空气中停留,而直接通过底部出风口被排出房外。这样不断地循环转换,使喷漆时房内空气清洁度达 98%以上,且送入的空气具有一定的压力,可在车的四周形成一恒定的气流以去除过量的油漆,从而最大限度地保证喷漆的质量。喷漆后需要在喷漆房内进行流平 24min,然后进入底漆烤漆房,本项目采用低温烤漆固化温度设定为 60 摄氏度,烤漆固化时间为 30min。

面漆喷涂:本项目底漆固化后喷面器,本项目设置有专用的面漆喷漆间,项目设置密闭式喷漆烤漆间,设置 1~2 名员工进行喷涂,本项目喷漆房采用干式喷漆房,喷漆过程中产生的颗粒物经瓦楞纸+过滤棉进行吸附,面漆采用水性漆喷漆时外部空气经过初级过滤网过滤后由风机送到房顶,再经过顶部过滤网二次过滤净化后进入房内。房内空气采用全降式,以 0.2-0.3m/s 的速度向下流动,使喷漆后的漆雾微粒不能在空气中停留,而直接通过底部出风口被排出房外。这样不断地循环转换,使喷漆时房内空气清洁度达 98%以上,且送入的空气具有一定的压力,可在车的四周形成一恒定的气流以去除过量的油漆,从而最大限度地保证喷漆的质量,面漆喷漆后需要在喷漆房内常温表干 3-5m,流平时间 20min,然后再进入烤漆房内 80℃下闪干 3-5min,最后在 85 摄氏度下烤漆 54min。


项目烤漆采用天然气为燃料的燃烧机进行加热,通过控制燃烧机的燃气量来调节烤漆温度。

待喷漆烤漆结束后,与外购的发动机、驾驶室等标准件、喷塑外壳等进行组

装。本项目组装完成后产品放入成品仓库待售。

主要污染工序:激光、等离子切割过程产生的切割烟尘;焊接过程中产生的焊接烟尘和打磨过程中产生的金属打磨粉尘;抛丸除锈过程中产生的粉尘;塑粉喷涂产生的颗粒物;塑粉固化产生的 VOCs;表面处理工序产生的预脱脂锅炉烟气(颗粒物、SO2、NOx。)、水分烘干废气(颗粒物、SO2、NOx。);喷漆前打磨粉尘;调漆、喷漆、烤漆过程中产生的颗粒物、VOCs、甲苯、二甲苯、SO₂、NOx。

2、表面前处理工艺流程及产污节点图如图 3:

表面处理生产工艺流程说明:

将需处理配件挂在输送链上,再浸入各槽子内使工件各处均能与处理液得到充分接触,需要喷涂的工件都需要经过表面处理,该过程分为两部分,第一步为预脱脂、脱脂除油;第二步为陶化过程。本项目共设置1条表面前处理生产线,包括1个预脱脂槽、1个脱脂槽、1个自来水水洗槽、1个陶化池及2个纯水清洗槽。

- (1) 脱脂:对于有油污和锈的工件必须进行脱脂处理,本项目选择化学脱脂,使用脱脂剂;
 - (2) 陶化工艺: 主要原材料为纳米陶化剂, 纳米陶化剂是一种基于锆盐为

基础的化学品,它能在清洁的金属物质表面形成一层纳米陶瓷涂层,有较强的分子间结合力和吸附力,抗盐雾腐蚀能力强。陶化剂可用于钢铁、锌和铝表面的处理,在处理金属表面可生成一种极薄的、陶化类的转化膜(纳米陶瓷),即陶化层,无渣、不含磷酸盐、挥发性有机物。陶化预处理工艺无有害重金属、无废渣,工序简单,能耗低,废水易于处理并可循环使用,成本低。本项目所用陶化液主要成分为氟锆酸、氟钛酸、肌醇、柠檬酸、柠檬酸钠。

(3)清洗工艺:本项目清洗均采用逆流清洗,分别为脱脂清洗、陶化工艺的纯水清洗,项目清洗废水经收集后采用自建污水处理站处理,处理达标后排入单县第三污水处理站处理,脱脂槽废液和陶化槽废液由于浓度较高,量比较少,定期更换交由有资质单位处理。

主要污染源、污染物处理和排放

主要污染工序

1. 废水

项目营运期的废水主要为表面处理清洗废水和职工生活污水。

本项目清洗废水主要污染物为 COD、BOD、SS、Zr+、F+、表面活性剂等,本项目清洗废水经均和池、化学处理沉淀池、气浮池、过滤装置、活性炭吸附装置、pH 调节池处理后满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)B 等级标准,经市政污水管网排入单县第三污水处理厂深度处理。

项目员工生活产生的生活污水经化粪池预处理后,经市政污水管网排入单县第三污水处理厂进行处理。

项目废水处理站及化粪池进行防渗处理,地面进行硬化,污水管网也进行防渗处理,项目排水对地下水的影响很小。

生活污水经化粪池处理,清洗废水经自建污水处理站处理后均经市政污水管 网排入单县第三污水处理厂进行处理对地表水影响很小;化粪池,废水处理站都 进行了防渗处理对地下水影响很小。所以本项目对周围水环境的影响很小。

2. 废气

(1) 废气 本项目废气主要有激光、等离子切割过程产生的切割烟尘;焊接过程中产生的焊接烟尘和打磨过程中产生的金属打磨粉尘;抛丸除锈过程中产生的粉尘;表面处理预脱脂及水分烘干废气;喷漆前打磨粉尘;调漆、喷漆、烤漆废气;烤漆房燃烧废气等。

本项目切割产生的粉尘通过切割机自带除尘设备进行处理,处理后废气无组织排放。

焊接废气采用中央集尘+脉冲滤筒除尘器进行除尘,处理后处理后废气由 15m排气筒(P2-P4)排放。打磨废气采用中央集尘+脉冲滤筒除尘器进行除尘, 处理后处理后废气由15m排气筒(P6)排放

本项目抛丸除锈过程产生的粉尘通过引风管进行收集,收集后采用脉冲袋式除尘器进行除尘,处理后废气由 15m 排气筒(P1)排放。

本项目表面处理预脱脂及水分烘干废气采用低氮燃烧器,废气经一根 15m 高排气筒 (P5) 排放。

本项目喷漆前打磨通过打磨柜自带除尘器处理后通过一根 15m 排气筒 (P7)

排放。

本项目喷漆和烤漆废气经过瓦楞纸+过滤棉吸收+活性炭吸附浓缩+催化燃烧装置进行处理,处理后通过一根 15m 排气筒 (P8) 排放。

本项目烤漆房燃烧机采用低氮燃烧器,产生的废气与喷漆烤漆废气一起经由 同一根 15 米高排气筒 (P8) 排放。

3. 噪声

项目噪声主要为精密锯、砂光机、台钻、立卧钻产生的机械噪声,噪声级在75~95dB(A)之间。

序号	噪声源	单机源强	数量
1	精密锯	75	2
2	砂光机	95	1
3	台钻	75	1
4	立卧钻	87	1

表 3-1 噪声产生情况表

4. 固废

本项目产生的生产边角料、除尘器收尘、废砂纸、废过滤棉、水性漆渣漆屑、废水性漆桶收集后外售;生活垃圾环卫部门外运统一处置;废灯管、废光触媒棉、废活性炭 分别收集后委托有资质单位处置。

项目产生的固体废物得到妥善处置和综合利用后,满足《一般工业固体废物贮存、 处置场污染控制标准》(GB18599-2001)及修改单和《危险废物贮存污染控制标准》(GB18597-2001)及修改单要求,对项目区周围的环境产生影响较小。

2.5 污染物处理及排放

本项目污染物均妥善处理,污染物具体处理措施、排放去向及相关投资见表 3-2,如下:

占口	H 14	和 目	光ル	ムII 次/ エニ\
序号	名 称	数量	单位	总投资(万元)
1	隔音降噪设施	4	套	6
2	抛丸粉尘脉冲袋式除尘器	1	套	30
-	4070 W ±744- 1 7007 (W. ± 1)	_	2	
2	切割机自带除尘装置	1	套	85
	N D T T T T T T T T T T T T T T T T T T	1		00

表 3-2 环保设施投资分项表

3	瓦楞纸+过滤棉吸收+活性炭吸附浓缩+ 催化燃烧装置废气处理装置	1	套	160
4	焊接烟尘中央集尘+脉冲滤筒除尘装置	3	套	45
7	前处理废水处理站	1	座	30
8	喷漆前打磨粉尘干式滤筒除尘器	2	套	16
9	固废存放点	1	处	3
10	危废储存间	1	座	8
合计		_		383

建设项目环境影响报告表主要结论及审批部门审批决定:

一、环评报告表主要结论(摘要):

1、项目概况

山东江华机械制造有限公司年产 2 万台农业机械项目位于单县经济开发区南樊路以南、东环路以东,项目总投资 56000 万元,通过利用厂区内现有车间进行建设,项目建成后可年产农业机械 2 万台。本项目所处地理位置优越,交通运输便利,能源供应充足,选址合理。

2、相关政策符合性

(1) 产业政策符合性分析

根据国家发改委令[2019]第29号《产业结构调整指导目录(2019年本)》,本项目不属于其"鼓励类"、"限制类"及"淘汰类",符合国家有关法律、法规和政策规定,属于允许建设项目。

(2) 土地利用符合性

本项目建设地点位于单县经济开发区南樊路以南、东环路以东,该块土地的使用性质为工业建设用地。因此符合当地土地利用规划和城市发展总体规划。

(3) 审批原则符合性

项目选址不在"禁批"和"限批"的范围之内。

3、环境质量现状

评价区域环境空气符合《环境空气质量标准》(GB3095-2012)二级标准,环境空气质量较好;声环境质量良好,能够满足《声环境质量标准》(GB3096-2008)3 类标准;区内地表水符合《地表水环境质量标准》(GB3838-2002)III类标准要求;项目区浅层地下水水质较好,能够符合《地下水质量标准》(GB/T14848-2017)III类标准。

4、施工期环境影响分析

项目通过利用现有厂房进行建设,施工期为设备的运输和安装,对环境影响小。

5、营运期环境影响分析

(1) 大气环境结论

本项目废气主要有激光、等离子切割过程产生的切割烟尘;焊接过程中产生的焊接烟尘和打磨过程中产生的金属打磨粉尘;抛丸除锈过程中产生的粉尘;塑粉喷涂产生的颗粒物;塑粉固化废气;固化天然气燃烧废气;表面处理预脱脂及水分烘干废气;

喷漆前打磨粉尘;调漆、喷漆、烤漆废气;烤漆房燃烧废气等。

本项目切割产生的粉尘通过中央集尘+脉冲滤筒除尘器进行处理,除尘器效率可达 99%,处理后废气由 15m 排气筒 (P1) 排放,能满足山东省《区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 "重点控制区"的排放浓度限值颗粒物 (10mg/m³) 和《大气污染物综合排放标准》(GB16297-1996)表 2 中颗粒物排放速率 (3.5kg/h)要求。

焊接及打磨废气采用中央集尘+脉冲滤筒除尘器进行除尘,除尘效率达99%,处理后处理后废气由15m排气筒(P2)排放,能满足山东省《区域性大气污染物综合排放标准》(DB37/2376-2019)表1"重点控制区"的排放浓度限值颗粒物(10mg/m³)和《大气污染物综合排放标准》(GB16297-1996)表2中颗粒物排放速率(3.5kg/h)要求。

本项目抛丸除锈过程产生的粉尘通过引风管进行收集,收集后采用脉冲袋式除尘器进行除尘,除尘器效率可达 99%,处理后废气由 15m 排气筒 (P3) 排放,能满足山东省《区域性大气污染物综合排放标准》 (DB37/2376-2019) 表 1 "重点控制区"的排放浓度限值颗粒物 (10mg/m³) 和《大气污染物综合排放标准》 (GB16297-1996)表 2 中颗粒物排放速率 (3.5kg/h) 要求。

本项目喷塑过程中产生的粉尘采用集气罩进行收集,废气处理采用引风机(风量设置为2000m³/h)引入脉冲滤筒+袋式除尘装置处理,处理后经15m高排气筒(P4)排放,收集效率按90%计算,处理效率按99%计算,处理后喷塑粉尘排放能满足山东省《区域性大气污染物综合排放标准》(DB37/2376-2019)表1"重点控制区"的排放浓度限值颗粒物(10mg/m³)和《大气污染物综合排放标准》(GB16297-1996)表2中颗粒物排放速率(3.5kg/h)要求。

本项目固化产生的 VOCs 采用集气罩进行收集,收集后通过低温等离子+活性炭吸附装置进行处理,,处理后由 15 米高排气筒 (P5) 排放,有组织 VOCs 排放满足山东省《挥发性有机物排放标准——第 5 部分:表面涂装行业》 (DB37/2801.5-2018)表2中"专用设备制造业"标准和表3中无组织厂界标准,即 VOCS 最高允许排放速率 ≤2.4 kg/h、最高允许排放浓度 70mg/m³。

本项目固化燃烧废气与塑粉固化废气经由同一根 15 米高排气筒 (P5) 排放,各 污染物 S02、颗粒物、NOX 的排放浓度满足山东省《锅炉大气污染物综合排放标准》

(DB37/2374-2018) 表 2 "重点控制区"排放标准(S0250mg/m³、颗粒物 10mg/m³、N0X100mg/m³)以及菏泽市人民政府办公室文件(菏政办发[2019]19号)菏泽市人民政府办公室关于印发《菏泽市落实(京津冀及周边地区 2019-2020 年秋冬季大气污染综合治理攻坚行动方案)实施方案》的通知(燃气锅炉氮氧化物排放浓度不高于50mg/m³)要求。

本项目表面处理预脱脂及水分烘干废气采用低氮燃烧器,废气经一根 15m 高排气筒(P6)排放,外排放污染物 S02、颗粒物、N0X 的排放浓度满足山东省《锅炉大气污染物综合排放标准》(DB37/2374-2018)表 2 "重点控制区"排放标准(S0250mg/m 3、颗粒物 10mg/m³、N0X100mg/m³)以及菏泽市人民政府办公室文件(菏政办发[2019]19号)菏泽市人民政府办公室关于印发《菏泽市落实(京津冀及周边地区 2019-2020年秋冬季大气污染综合治理攻坚行动方案)实施方案》的通知(燃气锅炉氮氧化物排放浓度不高于 50mg/m³)要求。

本项目喷漆和烤漆废气经过瓦楞纸+过滤棉吸收+活性炭吸附浓缩+催化燃烧装置进行处理,该装置的收集效率为90%,颗粒去除率为90%,VOCs、二甲苯、甲苯的处理效率达95%,处理后通过一根15m排气筒(P7)排放,外排有组织颗粒物满足《山东省区域性大气污染物综合排放标准》(DB37/2376-2019)表1中"重点控制区"的排放浓度限值(颗粒物10 mg/m³);有组织VOCs、甲苯和二甲苯浓度满足山东省《挥发性有机物排放标准——第5部分:表面涂装行业》(DB37/2801.5-2018)表2中"专用设备制造业"标准和表3中无组织厂界标准,即VOCS最高允许排放速率≤2.4 kg/h、最高允许排放浓度70mg/m³。甲苯最高允许排放速率≤0.2 kg/h、最高允许排放浓度5mg/m³。二甲苯最高允许排放速率≤0.8 kg/h、最高允许排放浓度15mg/m³。

本项目烤漆房燃烧机采用低氮燃烧器,产生的废气与喷漆烤漆废气一起经由同一根 15 米高排气筒 (P7) 排放,各污染物 S02、颗粒物、NOX 的排放浓度满足山东省《锅炉大气污染物综合排放标准》 (DB37/2374-2018) 表 2 "重点控制区"排放标准 (S0250mg/m³、颗粒物 10mg/m³、NOX100mg/m³) 以及菏泽市人民政府办公室文件 (菏政办发[2019] 19 号) 菏泽市人民政府办公室关于印发《菏泽市落实(京津冀及周边地区 2019-2020 年秋冬季大气污染综合治理攻坚行动方案)实施方案》的通知(燃气锅炉氮氧化物排放浓度不高于 50mg/m³) 要求。

本项目无组织颗粒物最大落地浓度为 0.0453 mg/m3,排放满足《大气污染物综

合排放标准》(GB16297-1996)表 2 中无组织颗粒物排放小于 1.0mg/m³; 生产车间无组织 VOCs、无组织二甲苯、无组织甲苯最大落地浓度分别为 0.0570mg/m³、

0.00376mg/m³、0.00273mg/m³,均满足山东省《挥发性有机物排放标准——第5部分: 表面涂装行业》(DB37/2801.5-2018)表3中无组织厂界标准,VOCs 无组织厂界浓度限值2.0mg/m³、甲苯无组织厂界浓度限值0.2mg/m³、二甲苯最最高允许排放浓度0.2mg/m³。对当地大气环境质量和环境敏感点影响不大。

本项目通过采取相应的废气处理措施,可做到废气的达标排放,对周围环境的影响较小。

(2) 水环境影响结论

项目营运期的废水主要为表面处理清洗废水和职工生活污水。

本项目清洗废水主要污染物为 COD、BOD、SS、Zr+、F+、表面活性剂等,本项目清洗废水经均和池、化学处理沉淀池、气浮池、过滤装置、活性炭吸附装置、pH 调节池处理后满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)B 等级标准,经市政污水管网排入单县第三污水处理厂深度处理。

项目员工生活产生的生活污水经化粪池预处理后,经市政污水管网排入单县第三 污水处理厂进行处理。

项目废水处理站及化粪池进行防渗处理,地面进行硬化,污水管网也进行防渗处理,项目排水对地下水的影响很小。

生活污水经化粪池处理,清洗废水经自建污水处理站处理后均经市政污水管网排入单县第三污水处理厂进行处理对地表水影响很小;化粪池,废水处理站都进行了防 渗处理对地下水影响很小。所以本项目对周围水环境的影响很小。

(3) 声环境影响结论

项目投产后,其噪声源主要为剪板机、激光切割机、折弯机、空压机等,其声级值范围在75~95dB(A)之间噪声防治措施:

统筹规划、合理布局;订购低噪音设备;项目生产车间的窗户可采用密闭性好的平开窗,在生产过程应关闭车间门窗。对办公地点采取隔声处理,保证8小时连续工作时间内,工作环境的声级值低于85dB(A)。该项措施可降低混合响声级5~10 dB(A)。做好厂区内的绿化,以减轻噪声污染;同时还应在厂区加强噪声设备的维护管理,确保设备处于良好的运转状态,杜绝因设备不正常运行所导致的高噪声现象。

通过以上治理措施,再经距离衰减和建筑物的阻挡作用,预计厂区边界噪声值能够达到《工业企业厂界环境噪声排放标准》3类标准要求,即昼间65 dB(A),夜间55 dB(A)。

总之本项目噪声对周围环境的影响很小。

(4) 固废环境影响结论

本项目产生的下脚料全部由炼钢厂回收进行综合利用;焊渣由生产厂家回收利用;废切削液属于HW09类危险废物,危废代码900-006-09,委托有资质单位处理;废液压油属于HW08类危险废物,危废代码900-218-08,委托有资质单位处理;废瓦楞纸和废过滤棉中含有吸附的漆渣属于《国家危险废弃物名录》中WH12染料、涂料废弃物,废物代码(264-013-12),交由有相关资质的单位回收;废油性漆和稀释剂桶属于《国家危险废弃物名录》中WH12染料、涂料废弃物,废物代码(264-013-11),交由有相关资质的单位回收;废活性炭属于HW49(废物代码900-041-49),交由有资质单位处理;废水性漆桶属于一般废物,由厂家回收利用;废催化剂由生产厂家回收利用;脱脂除锈废液属于HW17表面处理废物(废物代码336-064-17),交由有资质单位处理;废陷化液属于HW17表面处理废物(废物代码336-064-17),交由有资质单位处理;废废活性炭过滤器属于HW49危险废物(废物代码900-041-49),交由有资质单位处理;废废活性炭过滤器属于HW49危险废物(废物代码900-041-49),交由有资质单位处理;污泥属于HW12危险废物(废物代码900-252-12),交由有资质单位处理;生活垃圾全部由环卫部门外运后统一处理,不长期堆存,形不成二次污染。单位处理;生活垃圾全部由环卫部门外运后统一处理,不长期堆存,形不成二次污染。

本项目固废去向明确, 处置合理, 对周围环境造成的影响很小。

(5) 卫生防护距离结论

本项目 2#生产车间设 50m 卫生防护距离, 3#生产车间设 100m 卫生防护距离, 根据企业提供的实测图与本项目最近的敏感目标为小张庄, 距离约 162.63m。满足卫生防护距离要求。

(7) 环境风险评价结论

根据《建设项目环境风险评价技术导则》(HJ/T169-2018),项目区域不属于环境敏感区域,可能发生的风险是火灾事故,在做好风险防范措施和防范措施的情况下,本项目的环境风险影响不大。

6、总量控制

本项目 S02 排放量为 0.536t/a; N0X 排放量为 0.752t/a; V0Cs 有组织排放量为 0.1932t/a; 颗粒物有组织排放量为 0.5638t/a。因此需向当地主管部门申请相对应 的总量控制指标,总量控制指标按照倍量替代申请。

项目废水主要是清洗废水和生活污水,清洗废水经自建污水处理站处理达标后排入单县第三污水处理厂进行深度处理;生活污水排入厂区化粪池处理,经处理后排入单县第三污水处理厂进行深度处理,因此无需申请COD、氨氮指标。

7、环评总结论

山东江华机械制造有限公司年产 2 万台农业机械项目符合国家产业政策,用地符合城市总体规划要求。经环境影响分析可知,项目营运后对周围环境影响较小。 在各项环保措施得到落实的情况下,从环境保护的角度分析是可行的。

环评批复要求及落实情况见表 4-1, 如下:

表 4-1 环评批复要求及落实情况一览表

环评批复要求	实际落实情况	评价
该项目成为 (原本) (原	经分区活清自处定外面,该是上后区水沉吸化质标等。所以是是后区水沉吸化质标等。所以是是后区水沉吸化质标等。所以是是后区水沉吸化质标等。所以是是后区水沉吸化质标等。所以是是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一	已实
该项目新上1台130万大卡和1台100万大卡燃气燃烧机用于喷塑固化工序, 1台50万大卡燃气燃烧机和1台100万大卡燃气然烧机用于漆工序,2台25万	经核实,该项目喷塑工序暂未建设,1台50万大卡燃气燃烧机和1台100万大卡燃气然烧机用于漆工序,2台25万大卡燃气燃烧机	已落实

激光、等离子切割工序产生的烟尘分别 采取切割平台烟尘收集装置进行收集, 收集后经处理效率达到 99%以上的滤 筒式烟尘净化器进行处理, 处理后须满足《山东省区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 "重点控制区"的排放浓度限值颗粒物(10mg/m³)要求及排放速率满足《大气污染物综合排放标准》(GB16297199)表 2 相关要求后经 15 米高 P1 排气筒排放。

焊接及打磨工序产生的烟尘及粉尘分别经采取在焊接工位上方进行收集,收集后通过中央集尘系统经处理效率达到99%以上的脉冲袋式除尘装置进行处理,处理后须满足《山东省区域性大气污染物综合排放标准》

(DB37/2376-2019)表 1 "重点控制区"的排放浓度限值颗粒物(10mg/m³)要求及排放速率满足《大气污染物综合排放标准》(GB16297-1996)表 2 相关要求后经 15 米高 P2 排气筒排放。

抛丸工序产生的粉尘经采取在分离器后进行收集,收集后分别经处理效率达到99%的脉冲袋式除尘器进行处理,处理后须满足《山东省区域性大气污染物综合排放标准》中表2"重点区域"排放标准(颗粒物最高允许排放浓度

10mg/m³)及排放速率满足《大气污染物综合排放标准》(GB16297-1996)表2中

激光、等离子切割工序产生的烟尘 分别采取切割平台烟尘收集装置 进行收集,收集后无组织排放。

焊接工序产生的烟尘及粉尘分别经采取在焊接工位上方进行收集,收集后通过中央集尘系统经处理效率达到99%以上的脉冲袋式除尘装置进行处理,处理后满足《此东省区域性大气污染物综合排放标准》(DB37/2376-2019)表1"重点控制区"的排放浓度限值颗粒(10mg/m³)要求及排放速率满足《大气污染物综合排放标准》(GB16297-1996)表2相关要求后经15米高P2、P3、P4排气筒排放。

打磨工序产生的颗粒物通过打磨 柜自带的除尘设备处理后,无组织 排放。

抛丸工序产生的粉尘经采取在分离器后进行收集,收集后分别经处理效率达到99%的脉冲袋式除尘器进行处理,处理后须满足《山东省区域性大气污染物综合排放标准》中表2"重点区域"排放标准(颗粒物最高允许排放浓度10mg/m³)及排放速率满足《大气污染物综合排放标准》(GB16297-1996)表2中标准要求后经15米高P1排气筒排放。

该项目漆面打磨通过两套滤芯除 尘器进行处理,处理后须满足《山 标准要求后经 15 米高 P3 排气筒排放。

喷塑工序在封闭的喷粉室內进行,产生的粉尘通过喷粉室负压系统将未吸附在工件表面的粉尘引入处理效率达到99.5%以上的脉冲式滤芯+布袋除尘器进行处理,处理后外排粉尘浓度须满足《山东省区域性大气污染物综合排放标准》(DB37/2376-2019)中的表1重点控制区域标准要求后通过15米高P4排气筒排放。

固化工序在高温固化炉烘道内进行,产生的有机废气应在烘道进出口上方设置集气罩进行收集,收集后由处理效率达到90%以上的"低温等离子+活性炭吸附设备"进行处理,处理后有组织VOCs有机废气排放浓度须满足《山东省挥发性有机物排放标准——第5部分:表面涂装行业》(DB37/2801.5-2018)表2中"专用设备制造业"标准及排放速度满足《大气污染物综合排放标准》(GB16297-1996)表2中要求后通过15米高P5排气简排放。

该项目喷漆、流平、调漆、烤漆工序全 部在密闭的喷漆及烤漆房内进行,喷 漆、调漆及流平、烤漆工序产生的 VOCs、 甲苯二甲苯、漆雾废气收集后通过处理 效率达到90%以上的"经瓦楞纸+过滤 棉活性炭吸附浓缩+催化燃烧装置"进 行处理, 处理后颗粒物须满足《山东省 区域性大气污染物综合排放标准》 (DB37/2376-2019)表1中"重点控制区" 的排放浓度限值(颗粒物 10mg/m³)及 VOCs、二甲苯、甲苯排放满足山东省《挥 发性有机物排放标准一一第5部分:表 面涂装行业》(DB37/2801.5-2018)表 2 中"专用设备制造业"标准(即 VOCs 最 高允许排放速率≤2.4kg/h、最高允许 排放浓度 70mg/m³) 要求后经 15 米高 P7 排气筒排放,1台130万大卡和1台100 万大卡燃气燃烧机用于喷塑固化工序、 1台50万大卡燃气燃烧机和1台100万 大卡燃气燃烧机用于烤漆工序、2台25 东省区域性大气污染物综合排放标准》中表 2"重点区域"排放标准(颗粒物最高允许排放浓度 10mg/m³)及排放速率满足《大气污染物综合排放标准》 (GB16297-1996)表 2 中标准要求后经 15 米高 P6、P7 排气筒排放。

该项目喷漆、流平、调漆、烤漆工 序全部在密闭的喷漆及烤漆房内 进行, 喷漆、调漆及流平、烤漆工 序产生的 VOCs、甲苯二甲苯、漆 雾废气收集后通过处理效率达到 90%以上的"经瓦楞纸+过滤棉活 性炭吸附浓缩+催化燃烧裝置"进 行处理,处理后颗粒物须满足《山 东省区域性大气污染物综合排放 标准》(DB37/2376-2019)表1中 "重点控制区"的排放浓度限值 (颗粒物 10mg/m³)及 VOCs、二甲苯、 甲苯排放满足山东省《挥发性有机 物排放标准一一第5部分:表面涂 装行业》(DB37/2801.5-2018)表 2 中"专用设备制造业"标准(即 VOCs 最高允许排放速率≤2.4kg/h、最 高允许排放浓度 70mg/m³) 要求后 经 15 米高 P8 排气筒排放, 1 台 50 万大卡燃气燃烧机和1台100万大 卡燃气燃烧机用于烤漆工序、2台 25 万大卡燃气燃烧机和 1 台 50 万 大卡然气燃烧机用于表面处理预 脱脂及水分烘干工序的燃气燃烧 机分别采取低氮燃烧后产生的 SO2、NOx 颗粒物外排浓度须满足 用章《山东省锅炉大气污染物排放 标准》(DB37/2374-2018) 中表 2 中 "重点控制区"排放标准(烟尘 10mg/m³、SO₂ 50mg/m³)、排放速率 满足《大气污染物综合排放标准》 (GB16297-1996)表2中排放速率 要求后分别通过 15 米高 P8、P5 排 气筒排放应加强烟尘、粉尘、VOCs. 甲苯、二甲苯等废气的收集效率, 减少无组织的排放,厂界无组织颗 粒物浓度须满足《大气污染物综合

万大卡燃气燃烧机和1台50万大卡然 气燃烧机用于表面处理预脱脂及水分 烘干工序的燃气燃烧机分别采取低氮 燃烧后产生的 SO2、NOx 颗粒物外排浓 度须满足用章《山东省锅炉大气污染物 排放标准》(DB37/2374-2018)中表 2 中 "重点控制区"排放标准(烟尘 10mg/m 3、S02 50mg/m3)及《菏泽市落实<京津 冀及周边地区 2019-2020 年秋冬季大气 污染综合治理攻坚行动方案>实施方 案 X 菏政办发 [2019] 19 号) 要求燃气锅 炉低氮改造后氮氧化物排放浓度不高 于 50mg/m³要求、排放速率满足《大气 污染物综合排放标准》(GB16297-1996) 表 2 中排放速率要求后分别通过 15 米 高 P5、P6、P7 排气筒排放应加强烟尘、 粉尘、VOCs. 甲苯、二甲苯等废气的收 集效率,减少无组织的排放,厂界无组 织颗粒物浓度须满足《大气污染物综合 排放标准》(GB16297-1996)无组织排放 浓度监控限值(≤1.0mg/m³)标准要求; VOCs、二甲苯、甲苯厂界浓度须满足《山 东省挥发性有机物排放标准一第5部 分:表面涂装行业》 (DB37/2801.5-2018)表3中无组织厂界 标准(即 VOCs 无组织厂界浓度限值

2.0mg/m3、甲苯无组织厂界浓度限值 0.2mg/m³、二甲苯无组织厂界浓度 0. 2mg/m³),项目运营后如有于环评结论 和本批复不符情形时应对大气进行环 境影响后评价并报我局审批。据环境影 响报告表结论,该项目卫生防护距离为 2#生产车间设置 50m 卫生防护距离, 3 #生产车间设置 100m 卫生防护距离, 据山东鑫地博工程管理有限公司测绘 项目生产车间距最近的敏感点小张庄 村为 162.63 米,项目实施能够满足企 业卫生防护距离要求。你公司应配合县 规划部门、山东单具经济开发区管理委 员会和单县东城办事处做好该范围内 用地规划控制,禁止规划、建设住宅、 学校、医院等环境敏感建筑物。各有组 织排放源须按规范要求设置永久性采 样、监测孔及采样平台。

排放标准》(GB16297-1996)无组织 排放浓度监控限值(≤1.0mg/m³) 标准要求; VOCs、二甲苯、甲苯厂 界浓度须满足《山东省挥发性有机 物排放标准一第5部分:表面涂装 行业》(DB37/2801.5-2018)表3中 无组织厂界标准(即 VOCs 无组织 厂界浓度限值 2. 0mg/m³、甲苯无组 织厂界浓度限值 0. 2mg/m³、二甲苯 无组织厂界浓度 0.2mg/m^3),该项 目卫生防护距离为2#生产车间设 置 50m 卫生防护距离, 3# 生产车 间设置 100m 卫生防护距离, 项目 卫生防护距离能够满足企业卫生 防护距离要求。各有组织排放源已 按规范要求设置永久性采样、监测 孔及采样平台。

菏泽市生态环境局单县分局已对该项目主要污染物调剂了总量控制指标 S02排放指标 0.536t/a、N0x排放指标 0.752t/a、颗粒物排放指标 0.5638t/a、V0Cs 挥发性有机物排放指标 0.1932t/a。 选择低噪声设备,对主要噪声源采取降噪、隔声和对设备维护等措施,厂界噪声应符合《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准要求。	经核实,选用低噪声设备,合理布置厂区。对噪声源采取局部封闭及减振、降噪等设置。经检测,项目噪声稳定达到《工业企业厂家环境	已实
	噪声排放标准》(GB12348-2018) 3 类标准要求 	
本后液溶性、 生的, 定主回, 是产生, 发发, 发发, 发发, 发发, 发发, 发发, 发发, 发	经下用纸桶砂泥集的后集工厂活理成废物贮腐废废水 度炼液油脱性险废水。 是回、和、滤,理体化;生形的层 度炼液油脱性险废水。 是回、和、滤,理体化;收后禁的有效 度废活危险;利家收同环种固一染改 有,收切过活器陶由进厂由生收收有资量 发废废活危险;利家收同环始固一染改 度废废无危险;利家收同环始固一染改体。 发展,理体化;生水一对物业标《单》处 的一个。 发展,是一个。 发展,一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展, 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 发展,是一个。 是一个。 是一个。 是一个。 是一个。 是一个。 是一个。 是一个。	已实落
该项目利用厂区现有闲置厂房用于项 目建设,无土建工程对周围环境影响较 小。	经核实,该项目利用厂区现有闲置 厂房用于项目建设,无土建工程对 周围环境影响较小。	/
十分及此了每个時期上立处 法西日	, , , , , , , , , , , , , , , , , , , ,]

本次验收不包含喷塑生产线,该项目环评中激光、等离子切割工序产生的烟尘分别采取切割平台烟尘收集装置进行收集,收集后经处理效率达到99%以上的滤筒式

烟尘净化器进行处理后通过15米高空排放,实际建设为激光、等离子切割工序产生 的烟尘分别采取切割平台烟尘收集装置进行收集后,无组织排放;打磨工序产生的烟 尘及粉尘分别经采取在产尘上方进行收集,收集后通过中央集尘系统经处理效率达到 99%以上的脉冲袋式除尘装置进行处理后通过 15m 高排气筒高空排放,实际为前期打 磨工序通过打磨柜自带的除尘设备处理后通过 15m 高排气筒高空排放,漆面打磨通过 两套滤芯除尘器进行处理后经 15 米高 P6、P7 排气筒排放;该项目其他建设情况与环 评落实情况基本一致,建设过程中较环评不存在重大变动。项目与环评批复落实情况 基本一致。

表五

验收监测质量保证及质量控制:

1、本次验收废气采用的检测方法见表 5-1。

表 5-1 检测分析方法一览表

采样点位	检测项目	采样频次
1#进、出口检测口	颗粒物	检测2天,3次/天
2#进、出口检测口	颗粒物	检测2天,3次/天
3#进、出口检测口(2进1出)	颗粒物	检测2天,3次/天
4#出口检测口	颗粒物	检测2天,3次/天
5#出口检测口	颗粒物、氮氧化物、二氧化硫	检测2天,3次/天
6#出口检测口	颗粒物	检测2天,3次/天
7#出口检测口	颗粒物	检测2天,3次/天
8#出口检测口	颗粒物、氮氧化物、二氧化硫	检测2天,3次/天
8#进、出口检测口(6 进1出)	VOCs(NMHC)、甲苯、二甲苯	检测2天,3次/天
生产废水处理前、后	pH 值、悬浮物、COD _{Cr} 、BOD ₅ 、氨 氮、氟化物、阴离子表面活性剂、 锌	检测2天,4次/天
厂界上风向设1个参照点 厂界下风向设3个监控点	颗粒物、VOCs(NMHC)、甲苯、 二甲苯	检测2天,4次/天
厂界四周	噪声	检测2天,昼、夜间 各1次

2、质量控制和质量保证

检测过程中的质量保证措施按国家环境保护总局颁发的《环境监测质量保证管理规定》(暂行)的要求进行,实施全过程质量保证,保证了检测过程中各检测点位布置的科学性和可比性;检测分析方法采用国家有关部门颁布的标准(或推荐)分析方法,检测人员经过考核并持有合格证书;检测数据实行了三级审核制度,经过复核、审核,最后由授权签字人签发。

3、气体监测分析过程中的质量保证和质量控制

为保证监测分析结果准确可靠,无组织排放废气监测严格按照《大气污染物无组织排放监测技术导则》(HJ/T 55-2000)与建设项目竣工环保验收监测规定和要求执行。有组织废气监测严格按照《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)进行。被测排放物的浓度在仪器量程的有效范围,方法的检出限应满足要求。

4、噪声监测分析过程中的质量保证和质量控制

声级计在测试前后用标准发生源进行校准,噪声监测严格按照《工业企业厂界环境噪声排放标准》(GB12348-2008)进行,质量保证和质控按照国家环保局《环境监测技术规范》(噪声部分)进行。测量仪器和声校准器均在检定规定的有效期限内使用;测量前后在测量的环境中用声校准器校准测量仪器,示值偏差不大于0.5dB:测量时传声器加防风罩。

表 6

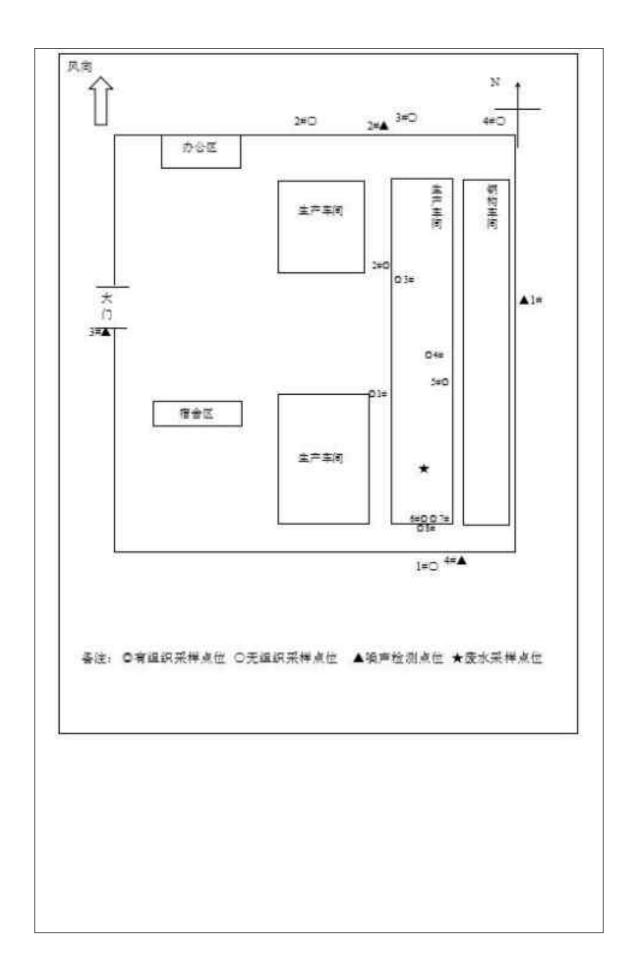
监测内容:

1、采样日期、点位及频次

表 6-1 检测信息一览表

检测项目检		检测分析方法	检测依据	方法检出限 或最低检出浓 度
		有组织		
颗	粒物	固定污染源排气中颗粒物测定与气态污染物采样方法(及修改单) 重量法	GB/T 16157-1996	/
颗	粒物	固定污染源废气 低浓度颗粒物的测定 重量法	НЈ 836-2017	1. 0mg/m³
VOCs	(NMHC)	固定污染源废气 总烃、甲烷和非甲烷总 烃的测定 气相色谱法	НЈ 38-2017	0.07mg/m³
对/ 间二 二甲 苯		固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱 法		
	邻二甲苯	固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法	НЈ 734-2014	0.004mg/m³
甲苯		固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法	НЈ 734-2014	0.004mg/m³
二氧化硫		固定污染源废气 二氧化硫的测定 紫外吸收法	DB37/T 2705-2015	2mg/m³
氮氧	化物	固定污染源废气 氮氧化物的测定 紫外吸收法	DB37/T 2704-2015	2mg/m³
		无组织		
颗	粒物	环境空气 总悬浮颗粒物的测定 重量法(及修改单)	GB/T 15432-1995	0.001mg/m³
VOCs (NMHC)		环境空气 总烃、甲烷和非甲烷总烃的测 定 直接进样-气相色谱法	НЈ 604-2017	0.07mg/m³
		废水		
pH 值		水质 pH 值的测定 玻璃电极法	GB/T 6920-1986	/
BOD_5		水质 五日生化需氧量 (BOD ₅) 的测定 稀释与接种法	НЈ 505-2009	0.5mg/L
C($\mathrm{OD}_{\mathrm{Cr}}$	水质 化学需氧量的测定 重铬酸盐法	НЈ 828-2017	4mg/L

悬浮物	水质 悬浮物的测定 重量法	GB/T 11901-1989	4mg/L
	水质 氨氮的测定 纳氏试剂分光光度 法	НЈ 535-2009	0.025mg/L
阴离子表面 活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法	GB/T 7494-1987	0.05mg/L
锌	水质 铜、锌、铅、镉的测定 原子吸收分光光度法	GB/T 7475-1987	0.05mg/L
氟化物	水质无机阴离子 (F¯、C1¯、NO₂¯、Br¯、NO₃¯、PO₃¯、SO₃²¯、SO₄²¯) 的测定 离子 色谱法	НЈ 84-2016	0.006mg/L
	噪声		
噪声	噪声仪分析法	GB 12348-2008	/


2、采样及检测仪器

项目	· · · · · · · · · · · · · · · · · · ·		仪器设备编号
	便携式气象参数检测仪	MH7100	YH(J)-05-156
	全自动大气/颗粒物采样器	MH1200	YH(J)-05-151
	全自动大气/颗粒物采样器	MH1200	YH(J)-05-152
	全自动大气/颗粒物采样器	MH1200	YH(J)-05-153
	全自动大气/颗粒物采样器	MH1200	YH(J)-05-154
	污染源真空箱采样器	MH3051 型	YH(J)-05-131
	污染源真空箱采样器	MH3051 型	YH(J)-05-132
加力並从 从	大气 VOC 采样器	MH1200-E	YH(J)-05-119
现场采样、检测设备	大气 VOC 采样器	MH1200-E	YH(J)-05-120
W W B	大气 VOC 采样器	MH1200-E	YH(J)-05-121
	大气 VOC 采样器	MH1200-E	YH(J)-05-122
	紫外烟气分析仪	MH3200	YH(J)-05-161
	全自动烟尘(气)测试仪	YQ3000-D	YH(J)-05-147
	全自动烟尘(气)测试仪	YQ3000-C	YH(J)-05-080
	全自动烟尘(气)测试仪	YQ3000-C	YH(J)-05-148
	污染源 VOC 采样器	MH3050	YH(J)-05-125
	噪声分析仪	AWA5688	YH(J)-05-135
实验室分析	岛津分析天平	AUW120D	YH(J)-07-059
仪器	恒温恒湿称重系统	PT-PM2.5	YH(J)-07-183

气相色谱-质谱联用仪	GCMS-QP2010SE	YH(J)-05-087
离子色谱仪	IC-8628	YH (J) -04-033
酸度计	PHS-3C	YH (J) -02-009
电子分析天平	FA2004B	YH(J)-07-060
原子吸收分光光度计	TAS-990AFG	YH(J)-04-032
气相色谱仪	GC-2014	YH(J)-04-171
酸式滴定管	25mL	YH(J)-01-101
酸式滴定管	50mL	YH (J) -01-102
生化培养箱	SHX-150III	YH(J)-03-017

3、检测项目、方法及检测依据

采样方法执行《固定源废气监测技术规范》(HJ/T 397-2007)、《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)和《大气污染物综合排放标准》(GB16297-1996)附录 C,检测分析方法采用国家标准方法。4、厂界布点及点位示意图

表七

验收监测期间生产工况记录:

表 7-1 监测期间工况记录表

监测时间	生产产品	单位	实际日均生产量	设计产能力	生产负荷%
2019-5-18	农业机械	套/天	24	30	80
2019-5-19	农业机械	套/天	27	30	90

验收监测结果:

废气检测结果见表 7-2、7-3、7-4, 如下

表 7-2: 无组织废气检测结果一览表

- 14 - 15	检测项目		检测结果	(mg/m³)	
采样日期		1#上风向	2#下风向	3#下风向	4#下风向
		0. 175	0. 342	0. 342	0. 251
2020. 07. 11	颗粒物	0. 187	0. 264	0. 323	0. 271
2020. 07. 11	19, 1 <u>2</u> 10	0. 193	0. 375	0. 353	0. 286
		0. 177	0. 356	0. 251	0. 277
		0. 179	0. 336	0. 366	0. 394
2020. 07. 12	颗粒物	0. 187	0. 373	0. 254	0. 376
2020. 01. 12		0. 195	0. 216	0. 391	0. 393
		0. 182	0. 378	0. 432	0. 285
		0. 86	1. 18	1. 12	1. 29
2020. 07. 11	VOCs (NMHC)	0. 91	1. 16	1. 10	1. 15
2020. 01. 11	(Tumie)	0. 95	1. 19	1. 25	1. 25
		0. 86	1. 34	1. 15	1. 37
		0.80	1. 11	1. 12	1. 25
2020. 07. 12	VOCs (NMHC)	0. 96	1. 38	1. 16	1. 23
	. COS (IMIIO)	0. 96	1. 11	1. 38	1. 30
		0. 94	1. 04	1. 37	1. 15
2020. 07. 11	甲苯	0. 0226	0. 0401	0. 0464	0. 0424
2320. 01. 11	1 21-	0. 0405	0. 0467	0. 0438	0. 0482

		0. 0314	0.0422	0. 0417	0. 0428
		0. 0213	0. 0308	0. 0347	0. 0383
		0. 0324	0. 0529	0. 0424	0. 0420
2020. 07. 12	甲苯	0. 0213	0. 0323	0. 0345	0. 0272
2020. 01. 12	1 74-	0. 0304	0. 0419	0. 0426	0. 0425
		0. 0214	0. 0333	0. 0356	0. 0387
		0. 0174	0. 0216	0. 0203	0. 0203
2020. 07. 11	二甲苯	0. 0156	0. 0198	0. 0235	0. 0304
2020.07.11		0. 0257	0. 0318	0. 0478	0. 0403
		0. 0196	0. 0319	0. 0216	0. 0358
		0. 0263	0. 0476	0. 0397	0. 0391
2020. 07. 12	二甲苯	0. 0206	0. 0382	0. 0219	0. 0233
2020.07.12	一丁本	0. 0308	0. 0476	0. 0508	0. 0414
		0. 0224	0. 0322	0. 0361	0. 0332
		1	1	l .	

备注:本项目颗粒物参考《大气污染物综合排放标准》(GB 16297-1996)表 2 无组织监控点限值($1.0 mg/m^3$);

本项目 VOCs(NMHC)、二甲苯、甲苯浓度参考《挥发性有机物排放标准-第 5 部分:表面涂装行业》(DB 37/2801. 5-2018)表 3 无组织监控点限值(VOCs(NMHC) \leq 2. 0mg/m³、甲苯 \leq 0. 2mg/m³)。

表 7-4: 噪声检测结果一览表

日期	点位	昼间噪声值 Led	昼间噪声值 Leq[dB(A)]		異声值 Leq[dB(A)]
	1#东厂界	55. 0	55. 0		45. 4
2019, 05, 18	2#北厂界	55. 7		44. 3	
2019. 00. 16	3#西厂界	54. 4			44. 2
	4#南厂界	55. 1			45. 1
	1#东厂界				47. 8
2019. 05. 19	2#北厂界	51. 4		48.8	
2019. 05. 19	3#西厂界	54. 5		48. 5	
	4#南厂界	51. 7		49. 3	
标准限	值	60		50	
日期	昼	- 间		包	え 间
口州	天气状况	平均风速(m/s)	天气:	状况	平均风速(m/s)
2019. 05. 18	多云	1.6	多云		1.7
2019. 05. 19	多云	1.6	1.6 多云		1.7
备注: 本项目噪声参	考《工业企业厂界取	「境噪声排放标准》	(GB 12348	3-2008)	2 类标准要求。

附表

气象条件参数

采样日期	气温(℃)	气压 (kPa)	风速 (m/s)	风向	低云量	总云量
	15. 4	100.8	1.9	NE	2	5
2019. 05. 18	21. 3	100.3	1.8	NE	2	4
	24. 5	100. 2	1.8	NE	2	5
	18. 9	100.5	1.7	NE	2	6
	21. 5	100.3	1.8	SE	2	5
2019. 05. 19	24. 8	100. 2	1.7	SE	2	5
	27. 6	100.0	1.6	SE	2	4
	22. 5	100. 2	1.8	SE	2	5

表 7-3: 有组织废气检测结果一览表

						检测]结果			
采样 日期	采样点位	检测项目		排放浓度	(mg/m^3)			排放速率	(kg/h)	
			1	2	3	均值	1	2	3	均值
	1#进口	颗粒物	41	43	42	42	0. 588	0. 622	0. 604	0.605
	检测口	标况流量 (Nm³/h)	14353	14471	14373	14399	/	/	/	/
	1#出口	颗粒物	1. 5	1.9	2. 1	1.8	0. 0229	0. 0292	0. 0316	0. 0279
	检测口	标况流量 (Nm³/h)	15293	15367	15065	15242	/	/	/	/
2020.	净化效率(%)	颗粒物	/	/	/	/	96. 1	95. 3	94.8	95. 4
07. 11	2#进口	颗粒物	38	39	41	39	0. 524	0. 534	0. 557	0. 538
	检测口	标况流量 (Nm³/h)	13778	13684	13586	13683	/	/	/	/
	2#出口	颗粒物	2. 4	2.7	2.2	2.4	0. 0348	0. 0394	0. 0316	0. 0353
	检测口	标况流量(Nm³/h)	14501	14609	14354	14488	/	/	/	/
	净化效率(%)	颗粒物	/	/	/	/	93. 4	92. 6	94. 3	93. 4

备注:本项目颗粒物排放浓度参考《区域性大气污染物综合排放标准》(DB37/2376-2019)表1重点控制区标准限值(颗粒物:10mg/m³)及排放速率参考《大气污染物综合排放标准》(GB/T16297-1996)表2中二级排放速率(3.5kg/h)。

						检测	结果			
采样 日期	采样点位	检测项目		排放浓度	(mg/m^3)			排放速率	(kg/h)	
			1	2	3	均值	1	2	3	均值
	1#进口	颗粒物	41	39	33	38	0. 597	0. 570	0. 477	0. 548
	检测口	标况流量(Nm³/h)	14569	14626	14451	14549	/	/	/	/
	1#出口	颗粒物	1. 7	1.9	1.6	1.7	0. 0261	0. 0293	0. 0243	0. 0265
	检测口	标况流量 (Nm³/h)	15326	15423	15180	15310	/	/	/	/
2020.	净化效率(%)	颗粒物	/	/	/	/	95. 6	94. 9	94. 9	95. 1
07. 12	2#进口	颗粒物	37	41	36	38	0. 513	0. 564	0. 491	0. 523
	检测口	标况流量 (Nm³/h)	13863	13746	13648	13752	/	/	/	/
	2#出口	颗粒物	2. 1	2. 6	2. 5	2. 4	0. 0308	0. 0384	0. 0362	0. 0351
	检测口	标况流量(Nm³/h)	14645	14752	14499	14632	/	/	/	/
	净化效率(%)	颗粒物	/	/	/	/	94. 0	93. 2	92. 6	93. 3

备注:本项目颗粒物排放浓度参考《区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 重点控制区标准限值(颗粒物: 10mg/m³)及排放速率参考《大气污染物综合排放标准》(GB/T16297-1996)表 2 中二级排放速率(3.5kg/h)。

						检测	结果			
采样日期	采样点位	检测项目		排放浓度	(mg/m³)			排放速率	(kg/h)	
			1	2	3	均值	1	2	3	均值
	3#进口1	颗粒物	22	24	27	24	0. 118	0. 127	0. 141	0. 129
	检测口	标况流量 (Nm³/h)	5350	5308	5224	5294	/	/	/	/
	3#出口	颗粒物	34	31	35	33	0. 186	0. 169	0. 189	0. 181
2020. 07. 11		标况流量(Nm³/h)	5468	5436	5407	5437	/	/	/	/
		颗粒物	3. 4	3. 2	3. 5	3. 4	0. 0380	0. 0348	0. 0386	0. 0371
		标况流量 (Nm³/h)	11165	10887	11020	11024	/	/	/	/
	净化效率 (%)	颗粒物	/	/	/	/	87. 5	88. 2	88. 3	88. 0

备注:本项目颗粒物排放浓度参考《区域性大气污染物综合排放标准》(DB 37/2376-2019)表1重点控制区标准限值(颗粒物:10mg/m³)及排放速率参考《大气污染物综合排放标准》(GB/T16297-1996)表2中二级排放速率(3.5kg/h)。

						检测	结果			
采样日期	采样点位	检测项目		排放浓度	(mg/m³)			排放速率	(kg/h)	
			1	2	3	均值	1	2	3	均值
	3#进口 1	颗粒物	26	27	24	26	0. 140	0. 144	0. 127	0. 137
	3#进口 2 检测口 3#出口	标况流量 (Nm³/h)	5369	5336	5280	5328	/	/	/	/
		颗粒物	31	37	35	34	0. 168	0. 202	0. 188	0. 186
2020. 07. 12		标况流量(Nm³/h)	5404	5455	5371	5410	/	/	/	/
		颗粒物	3. 6	3. 8	3. 4	3. 6	0. 0411	0. 0424	0. 0384	0. 0406
		标况流量 (Nm³/h)	11428	11157	11286	11290	/	/	/	/
	净化效率 (%)	颗粒物	/	/	/	/	86.6	87.7	87.8	87. 4

备注:本项目颗粒物排放浓度参考《区域性大气污染物综合排放标准》(DB 37/2376-2019)表1重点控制区标准限值(颗粒物:10mg/m³)及排放速率参考《大气污染物综合排放标准》(GB/T16297-1996)表2中二级排放速率(3.5kg/h)。

						检测	结果			
采样日期	采样点位	检测项目		排放浓度	(mg/m^3)			排放速率	(kg/h)	
			1	2	3	均值	1	2	3	均值
	4#出口	颗粒物	2. 4	2.6	2. 2	2.4	0. 0140	0. 0153	0. 0127	0. 0140
	检测口	标况流量 (Nm³/h)	5817	5879	5767	5821	/	/	/	/
2002 07 11	6#出口	颗粒物	2. 1	2.6	2.2	2.3	0. 0232	0. 0285	0. 0239	0. 0252
2020. 07. 11	检测口	标况流量(Nm³/h)	11025	10965	10842	10944	/	/	/	/
	7#出口 检测口	颗粒物	3. 1	2.8	3. 2	3.0	0. 0387	0. 0342	0. 0397	0. 0376
		标况流量 (Nm³/h)	12491	12211	12420	12374	/	/	/	/
	4#出口	颗粒物	2. 5	2.7	2.3	2.5	0. 0146	0. 0160	0. 0134	0. 0147
	4#出口 检测口	标况流量 (Nm³/h)	5846	5908	5834	5863	/	/	/	/
2020. 07. 12	6#出口	颗粒物	2. 3	2. 5	2. 2	2.3	0. 0253	0. 0274	0. 0241	0. 0256
2020. 07. 12	检测口	标况流量 (Nm³/h)	11015	10965	10968	10983	/	/	/	/
	7#出口	颗粒物	3. 4	3. 1	2.9	3. 1	0. 0424	0. 0380	0. 0361	0. 0388
	检测口	标况流量 (Nm³/h)	12472	12247	12454	12391	/	/	/	/

备注:本项目颗粒物排放浓度参考《区域性大气污染物综合排放标准》(DB 37/2376-2019)表1重点控制区标准限值(颗粒物:10mg/m³)及排放速率参考《大气污染物综合排放标准》(GB/T16297-1996)表2中二级排放速率(3.5kg/h)。

采样	采样								检测	结果				
木件 日期	大件 点位	检测项目	排放	(浓度(m	g/m³) (5	实测)	排放浓	度(mg/	/m³) (‡	斤算后)		排放速率	(kg/h)	
日朔			1	2	3	均值	1	2	3	均值	1	2	3	均值
		颗粒物	1. 9	1.8	1.4	1.7	2. 2	2. 1	1.6	2. 0	4. 73×10^{-3}	4.28×10^{-3}	3. 41×10^{-3}	4. 14×10^{-3}
		二氧化硫	2. 3	2.6	2. 6	2. 5	3	3	3	3	5. 72×10^{-3}	6. 18×10 ⁻³	6. 33×10^{-3}	6. 08×10 ⁻³
2020.	5#出口	氮氧化物	73. 5	71.4	72. 1	72.3	85	83	84	84	0. 183	0. 170	0. 176	0. 176
07. 11	2#出口	氧含量 (%)	5. 9	6. 0	6. 0	6. 0	/	/	/	/	/	/	/	/
07.11	1至700 口	流量(Nm³ /h)	2488	2378	2435	2434	/	/	/	/	/	/	/	/
		烟温(℃)	99	98	99	99	/	/	/	/	/	/	/	/
		颗粒物	1.8	1. 7	2. 1	1. 9	2. 1	2. 0	2. 5	2. 2	4. 52×10^{-3}	4. 13×10^{-3}	5. 22×10^{-3}	4.63×10^{-3}
		二氧化硫	<2	2. 3	2. 5	/	/	3	3	/	/	5.59×10^{-3}	6. 22×10^{-3}	/
2020.	5#出口	氮氧化物	74.6	71. 7	74. 2	73. 5	88	84	87	86	0. 187	0. 174	0. 185	0. 182
07. 12	检测口	氧含量(%)	6. 2	6. 0	6. 1	6. 1	/	/	/	/	/	/	/	/
01.12	100000	流量(Nm³ /h)	2512	2432	2488	2477	/	/	/	/	/	/	/	/
		烟温(℃)	100	99	100	100	/	/	/	/	/	/	/	/

备注:本项目颗粒物、二氧化硫、氮氧化物排放浓度参考山东省《区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 中"重点控制区"的排放浓度限值(二氧化硫 50mg/m³、氮氧化物 100mg/m³、颗粒物 10mg/m³)。

采样	采样								检测结	果				
大件 日期	点位	检测项目	排方	女浓度 (m	g/m³)(多	定测)	排放沒	衣度(mg/	/m³) (护	「算后)		排放速率	(kg/h)	
口州	严 [1	2	3	均值	1	2	3	均值	1	2	3	均值
		颗粒物	<1	<1	<1	/	/	/	/	/	/	/	/	/
		二氧化硫	<2	<2	<2	/	/	/	/	/	/	/	/	/
2020.	8#出口	氮氧化物	<2	<2	<2	/	/	/	/	/	/	/	/	/
07. 11	检测口	氧含量(%)	20. 7	20. 7	20.7	20. 7	/	/	/	/	/	/	/	/
		流量(Nm³/h)	51444	50931	51210	51195	/	/	/	/	/	/	/	/
		烟温(℃)	36	36	36	36	/	/	/	/	/	/	/	/
		颗粒物	<1	<1	<1	/	/	/	/	/	/	/	/	/
		二氧化硫	<2	<2	<2	/	/	/	/	/	/	/	/	/
2020.	8#出口	氮氧化物	<2	<2	<2	/	/	/	/	/	/	/	/	/
07. 12	检测口	氧含量(%)	20. 7	20.7	20. 7	20. 7	/	/	/	/	/	/	/	/
		流量(Nm³/h)	51623	51360	50865	51283	/	/	/	/	/	/	/	/
		烟温(℃)	37	37	37	37	/	/	/	/	/	/	/	/

备注:本项目颗粒物、二氧化硫、氮氧化物排放浓度参考山东省《区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 中"重点控制区"的排放浓度限值(二氧化硫 50mg/m³、氮氧化物 100mg/m³、颗粒物 10mg/m³)。

							结果			
采样日期	采样点位	检测项目		排放浓度	(mg/m³)			排放速率	(kg/h)	
			1	2	3	均值	1	2	3	均值
		VOCs (NMHC)	14. 9	12. 5	14. 2	13. 9	0.0511	0. 0425	0. 0493	0.0476
	8#进口1	甲苯	0. 243	0. 141	0. 174	0. 186	8.33×10-4	4.79×10-4	6. 04×10-4	6. 38×10-4
	检测口	二甲苯	0.366	0. 382	0. 411	0. 386	1.25×10-3	1.30×10-3	1. 43×10-3	1.33×10-3
		标况流量 (Nm³/h)	3427	3398	3469	3431	/	/	/	/
		VOCs (NMHC)	17. 7	16. 2	14.9	16. 3	0. 154	0. 141	0. 130	0. 142
	8#进口2	甲苯	0.005	0. 007	0. 012	0.008	4. 34×10-5	6.11×10-5	1.04×10-4	6.96×10-5
0000 07 11	检测口	二甲苯	0.730	0. 319	0. 568	0. 539	6. 34×10-3	2.78×10-3	4. 94×10-3	4.69×10-3
2020. 07. 11		标况流量(Nm³/h)	8686	8723	8698	8702	/	/	/	/
		VOCs (NMHC)	19. 4	17.8	17.0	18. 1	0. 166	0. 154	0. 146	0. 156
	8#进口3	甲苯	0.010	0. 010	0. 014	0. 011	8.58×10-5	8.66×10-5	1.20×10-4	9.76×10-5
	检测口	二甲苯	0. 299	0. 135	0. 266	0. 233	2.56×10-3	1.17×10-3	2. 29×10-3	2.01×10-3
		标况流量 (Nm³/h)	8577	8658	8594	8610	/	/	/	/
	8#进口4	VOCs (NMHC)	15. 7	13. 6	18. 0	15.8	0. 0576	0. 0503	0. 0663	0. 0581
	检测口	甲苯	0.013	0. 011	0. 020	0. 015	4.77×10-5	4. 07×10-5	7. 36×10-5	5. 40×10-5

二甲苯	0. 199	0. 117	0. 104	0. 140	7.30×10-4	4. 33×10-4	3.83×10-4	5. 15×10-4
标况流量(Nm³/h)	3669	3702	3682	3684	/	/	/	/

.

						检测	结果			
采样日期	采样点位	检测项目		排放浓度	(mg/m^3)			排放速率	(kg/h)	
			1	2	3	均值	1	2	3	均值
		VOCs (NMHC)	18. 1	19. 3	17. 2	18. 2	0. 271	0. 290	0. 258	0. 273
	8#进口 5	甲苯	0. 070	0. 032	0. 068	0.057	1.05×	4.81×	1. 02×	8. 49×
	8#斑口 5 检测口	十 本	0.070	0.032	0.068	0. 057	10-3	10-4	10-3	10-4
	松坝口	二甲苯	6. 65	5. 53	7. 42	6. 53	0. 0997	0. 0831	0. 111	0.0980
		标况流量 (Nm³/h)	14986	15027	14977	14997	/	/	/	/
		VOCs (NMHC)	18.8	15. 5	18. 9	17. 7	0. 164	0. 135	0. 165	0. 155
		甲苯	0. 011	0.007 0.008 0.009		0.000	9.60×	6. 09×	6. 97×	7. 55×
	8#进口 6	TA	0. 011	0.007	0.008	0.009	10-5	10-5	10-5	10-5
2020. 07. 1	检测口	二甲苯	0. 412	0. 290	0. 306	0. 336	3.60×	2. 52×	2. 67×	2.93×
2020.07.1			0.412	0. 290	0.300	0. 550	10-3	10-3	10-3	10-3
1		标况流量 (Nm³/h)	8727	8698	8714	8713	/	/	/	/
		VOCs (NMHC)	7. 90	6.64	7. 23	7. 26	0. 406	0. 338	0.370	0. 372
	8#出口	甲苯	0. 020	0.013	0.019	0.017	1.03×	6. 62×	9. 73×	8.88×
	0#岀□ 检测□	T. 4	0. 020	0.013	0.019	0.017	10-3	10-4	10-4	10-4
	一位 四	二甲苯	0.883	1. 24	1. 14	1. 09	0.0454	0.0632	0. 0584	0. 0557
		标况流量(Nm³/h)	51444	50931	51210	51195	/	/	/	/
	净化效率	VOCs (NMHC)	/			/	53. 0	58. 4	54. 5	55. 3
		甲苯	/	/	/	/	52. 2	45. 2	51. 1	49. 5
	(%)	二甲苯	/	/	/	/	60. 2	30.8	52. 5	47.8

备注: 本项目 VOCs (NMHC)、二甲苯、甲苯排放浓度参考《挥发性有机物排放标准-第5部分:表面涂装行业》(DB 37/2801.5-2018)表 2 限值 (VOCs (NMHC) ≤70mg/m³、甲苯≤5mg/m³、二甲苯≤15mg/m³),排放速率参考 (VOCs (NMHC) ≤2.4kg/h、甲苯≤0.2kg/h、二甲苯≤0.8kg/h)。

检测结果 采样点位 排放速率 (kg/h) 采样日期 检测项目 排放浓度 (mg/m³) 均值 3 均值 VOCs (NMHC) 13. 4 17.3 15. 3 15. 3 0.0465 0.0582 0.0535 0.0528 甲苯 8#进口1 0.151 0.201 0.297 $5.24 \times 10 - 4$ 6.77 \times 10-4 1. $04 \times 10 - 3$ $7.47 \times 10 - 4$ 0.216 二甲苯 检测口 0.331 0.341 0.382 0.351 $1.15 \times 10 - 3$ $1.15 \times 10 - 3 \mid 1.34 \times 10 - 3 \mid 1.21 \times 10 - 3$ 标况流量 (Nm³/h) / 3472 3366 3498 3445 VOCs (NMHC) 17.0 18.0 17.2 0.147 0.157 0.149 16.6 0. 144 甲苯 8#进口2 0.005 0.008 0.011 0.008 4.33×10^{-5} 6.96 \times 10-5 $9.57 \times 10 - 5$ $6.95 \times 10 - 5$ 检测口 二甲苯 0.324 $5.59 \times 10 - 3$ 2.82×10^{-3} $4.13 \times 10 - 3$ 0.645 0.475 0.481 4.18×10^{-3} 2020, 07, 12 标况流量 (Nm³/h) / / 8667 8698 8702 8689 VOCs (NMHC) 19.0 16.4 14.7 16. 7 0.163 0. 142 0.126 0.144 甲苯 0.010 0.011 0.013 $8.58 \times 10-5$ $9.50 \times 10 - 5$ $1.12 \times 10 - 4$ $9.75 \times 10 - 5$ 8#进口3 0.011 二甲苯 检测口 0.295 0.136 0.255 0.229 $2.53 \times 10 - 3$ 1. $17 \times 10 - 3$ $2.19 \times 10 - 3$ $1.97 \times 10 - 3$ 标况流量 (Nm³/h) 8580 8632 8596 8603 8#进口4 VOCs (NMHC) 18.4 15.8 13.7 16.0 0.0673 0.0581 0.0505 0.0586

检测口	甲苯	0.014	0. 011	0. 020	0.015	5. 12×10-5	4.05×10-5	7. 38×10-5	5. 51×10-5
	二甲苯	0. 206	0. 116	0. 131	0. 151	7. 53×10-4	4. 27×10-4	4.83×10-4	5. 54×10-4
	标况流量(Nm³/h)	3657	3678	3689	3675	/	/	/	/

表7-4 废水检测结果一览表

采样日期	检测 点位	频次	pH 值 (无量纲)	悬浮物 (mg/L)	BOD5 (mg/L)	CODCr (mg/L)	氨氮 (mg/L)	阴离子表 面活性剂 (mg/L)	锌(mg/L)	氟化物 (mg/L)	样品状态
		1	8. 69	42	813	2.78×103	9. 90	0. 64	0. 68	1. 92	
	生产废	2	8. 56	40	821	2.76×103	9. 94	0.66	0. 67	1.83	
	水处理	3	8. 74	43	827	2.76×103	10. 1	0. 62	0.68	1. 90	浅黄微浊
	前	4	8. 63	44	834	2.78×103	10.0	0. 62	0.69	1.86	次與城压
2020. 07. 11		均值	/	42	824	2.77×103	9. 99	0. 64	0.68	1.88	
2020.07.11		1	8. 42	6	23. 6	78	0. 115	< 0.05	< 0.05	0.060	
	生产废	2	8. 46	4	24. 4	83	0. 135	< 0.05	< 0.05	0.054	
	水处理	3	8. 47	5	25. 3	77	0. 131	< 0.05	< 0.05	0. 047	
	后	4	8. 51	6	26. 0	80	0. 126	< 0.05	< 0.05	0.042	 无色澄清
		均值	/	5	24. 8	80	0. 127	/	/	0. 051	1 一 色 色 很 相
去贸	效率 (%)		/	88. 1	97. 0	97. 1	98. 7	/	/	97. 3	
Ž	参考限值		6. 5-9. 5	400	350	500	45	20	5	20	
		备注:	废水排放浓	度参考 《污》	k排入城镇下	水道水质标准	(GB/T3196	2-2015)B 等	级标准要求	0	

采样日期	检测 点位	频次	pH 值 (无量纲)	悬浮物 (mg/L)	BOD5 (mg/L)	CODCr (mg/L)	氨氮 (mg/L)	阴离子表 面活性剂 (mg/L)	锌(mg/L)	氟化物(mg/L)	样品状态
	生产废水处理前	1	8. 72	43	827	2. 70×103	10. 3	0. 66	0. 66	1.77	
		2	8. 70	45	824	2.76×103	10.3	0. 64	0. 68	1. 90	
		3	8. 73	46	829	2.77×103	10.6	0. 67	0. 69	1.84	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		4	8. 76	46	831	2. 68×103	10. 5	0. 67	0. 68	1.76	浅黄微浊
		均值	/	45	828	2. 73×103	10. 4	0. 66	0. 68	1.82	
2020. 07. 12	生产废水处理后	1	8. 52	7	25. 3	72	0. 131	<0.05	<0.05	0.060	
		2	8. 50	7	25. 9	74	0. 142	<0.05	<0.05	0. 057	
		3	8. 56	6	26. 7	70	0. 137	<0.05	<0.05	0. 049	
		4	8. 57	8	26. 2	77	0. 148	<0.05	<0.05	0. 048	
		均值	/	7	26. 0	73	0. 140	/	/	0. 054	无色澄清
去图	去除效率 (%)		/	84. 4	96. 9	97. 3	98. 7	/	/	97. 1	
	参考限值		6. 5-9. 5	400	350	500	45	20	5	20	

备注:废水排放浓度参考《污水排入城镇下水道水质标准》(GB/T31962-2015)B等级标准要求。

表7-5 噪声检测结果一览表

	水10 木	广应则和个	グロンド										
日期	点位	昼间噪声 Leq[dB(A		夜间噪声值 Leq[dB(A)]									
	1#东厂界	54. 8		46. 4									
2020 07 11	2#北厂界	55. 2		45. 6									
2020. 07. 11	3#西厂界	55. 5		46. 0									
	4#南厂界	55. 1		46. 3									
	1#东厂界	54. 4		46. 2									
2020. 07. 12	2#北厂界	54. 7		45. 8									
2020. 07. 12	3#西厂界	55. 7		45. 6									
	4#南厂界	55. 3		46. 1									
参考限	值	65		55									
ing libra	昼间]		夜间									
日期	天气状况	平均风速 (m/s)	夜间										
2020. 07. 11	多云	2. 4	多艺	5	2. 4								
2020. 07. 12	多云	2.4 多		云 2.7									
备注: 本项目噪声参;		不境噪声排放标》	隹》(GB1	各注・本项目噪声参考《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准。									

备注:本项目噪声参考《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。

附表: 固定污染源排气筒参数表

排气筒编号	排气筒高度 (m)	排气筒内径 (m)
1#排气筒	15	0.70
2#排气筒	15	0.70
3#排气筒	15	1. 25×0. 40
4#排气筒	15	0. 50
5#排气筒	15	0.40
6#排气筒	15	0. 40
7#排气筒	15	0.40
8#排气筒	20	1.40

验收监测结论:

山东江华机械制造有限公司成立于 2013 年 04 月,项目建设选址位于单县经济开发区南樊路以南,东环路以东,2020 年 06 月,山东江华机械制造有限公司根据《中华人民共和国环境影响评价法》及《建设项目环境保护管理条例》中相关规定,委托菏泽泰诺环境科技有限公司编制完成了《山东江华机械制造有限公司年产 2 万台农业机械项目环境影响报告表的批复》,报告表得出本项目符合产业政策、选址合理,采用适当的污染防治措施,污染物达标排放,从环保角度而言建设可行。

- 1、2020年06月10日,菏泽市生态环境局巨野分局以单行审投【2020】154号文件对本项目环评文件予以批复,同意项目开工建设。
- 3、该项目实际总投资50000万元,其中环保投资383万元,占总投资的0.77%。
- 4、本次验收不包含喷塑生产线,该项目环评中激光、等离子切割工序产生的烟尘分别采取切割平台烟尘收集装置进行收集,收集后经处理效率达到99%以上的滤筒式烟尘净化器进行处理后通过15米高空排放,实际建设为激光、等离子切割工序产生的烟尘分别采取切割平台烟尘收集装置进行收集后,无组织排放;打磨工序产生的烟尘及粉尘分别经采取在产尘上方进行收集,收集后通过中央集尘系统经处理效率达到99%以上的脉冲袋式除尘装置进行处理后通过15m高排气筒高空排放,实际为前期打磨工序通过打磨柜自带的除尘设备处理后通过15m高排气筒高空排放,漆面打磨通过两套滤芯除尘器进行处理后经15米高P6、P7排气筒排放;该项目其他建设情况与环评落实情况基本一致,建设过程中较环评不存在重大变动。项目与环评批复落实情况基本一致。
- 5、该项目环保设施建设情况如下:

废水处理设施化粪池,自建污水处理装置(工艺为均和池+化学处理沉淀池+气浮池+过滤装置+活性炭吸附装置+PH调节池)已建设完成。废气处理设备包括: 抛丸粉尘脉冲袋式除尘器、切割粉尘中央集尘+脉冲袋式除尘器、瓦楞纸+过滤棉吸收+活性炭吸附浓缩+催化燃烧装置废气处理装置、3套焊接烟尘中央集尘+脉冲滤筒除尘装置、2套喷漆前打磨粉尘干式滤筒除尘器。基础减震、隔声设施、地面硬化、绿化及生活垃圾收集等工程。

6、验收工况:验收监测期间,企业生产负荷达到75%以上,满足验收条件。

7、验收监测结果综述:

(1)废气

1) 有组织废气

1#排气筒颗粒物排放浓度最大值为 2. 1mg/m³, 排放速率为 0. 0316kg/h, 处理效率为 94. 8-96. 1%, 2#排气筒颗粒物排放浓度最大值为 2. 7mg/m³, 排放速率为 0. 0394kg/h, 处理效率为 92. 6-94. 3%, 3#排气筒颗粒物排放浓度最大值为 3. 8mg/m³, 排放速率为 0. 0424kg/h, 处理效率为 86. 6-88. 3%, 4#排气筒颗粒物排放浓度最大值为 2. 7mg/m³, 排放速率为 0. 00. 0160kg/h, 6#排气筒颗粒物排放浓度最大值为 2. 6mg/m³, 排放速率为 0. 0285kg/h, 7#排气筒颗粒物排放浓度最大值为 3. 4mg/m³, 排放速率为 0. 0424kg/h, 能满足山东省《区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 "重点控制区"的排放浓度限值颗粒物 (10mg/m³)和《大气污染物综合排放标准》(GB16297-1996)表 2 中颗粒物排放速率(3. 5kg/h)要求。

5#排气筒颗粒物排放浓度最大值为 2. 5mg/m³, 排放速率为 5. 22×10^{-3} kg/h, SO₂排放浓度最大值为 3mg/m³, 排放速率为 6. 33×10^{-3} kg/h, NOx 排放浓度最大值为 88mg/m³, 排放速率为 0. 187kg/h, 8#排气筒 SO₂、颗粒物、NOx 的排放浓度低于检测线,满足山东省《锅炉大气污染物综合排放标准》(DB37/2374-2018)表 2 "重点控制区"排放标准(SO₂50mg/m³、颗粒物 10mg/m³、NO_x100mg/m³)要求。

8#排气筒有组织 VOCs 排放浓度最大值为 8.91mg/m³, 排放速率为 0.460kg/h, 处理效率为 44.8-53.3%,甲苯排放浓度最大值为 0.02mg/m³, 排放速率为 1.03×10^{-3} kg/h, 处理效率为 42.2-59.7%,二甲苯排放浓度最大值为 1.24mg/m³, 排放速率为 0.0632kg/h, 处理效率为 30.8-60.2%,满足山东省《挥发性有机物排放标准——第 5 部分:表面涂装行业》(DB37/2801.5-2018)表 2 中"专用设备制造业"标准和表 3 中无组织厂界标准,即 VOCS 最高允许排放速率 \leq 2.4 kg/h、最高允许排放浓度 70mg/m³。甲苯最高允许排放速率 \leq 0.2 kg/h、最高允许排放浓度 5mg/m³。二甲苯最高允许排放速率 \leq 0.8 kg/h、最高允许排放浓度 15mg/m³。

本项目无组织颗粒物最大落地浓度为 0. 0432 mg/m³, 排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中无组织颗粒物排放小于 1. 0mg/m³; 生产车间无组织 VOCs、无组织二甲苯、无组织甲苯最大落地浓度分别为 1. 38mg/m³、0. 0529mg/m³、0. 0508mg/m³,均满足山东省《挥发性有机物排放标准——第 5 部分:表面涂装行

业》(DB37/2801.5-2018)表 3 中无组织厂界标准, VOCs 无组织厂界浓度限值 2.0mg/m 3、甲苯无组织厂界浓度限值 0.2mg/m³、二甲苯最最高允许排放浓度 0.2mg/m³。

(2) 噪声

经监测,厂界环境昼间最大噪声值 55.7dB(A),夜间最大噪声值为 46.4dB(A),满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 3 类标准要求。

(3) 废水

经检测,厂区废水 PH 值在 8. 42-8. 57 之间,COD 排放浓度最大值 83mg/L、BOD 排放浓度最大值 26. 7mg/L、SS 排放浓度最大值 8mg/L、Zr+低于检测值、氟化物排放浓度最大值 0. 057mg/L、表面活性剂低于检测值、氨氮排放浓度最大值 0. 148mg/L,满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)B 等级标准,经市政污水管网排入单县第三污水处理厂深度处理。

(4) 固废

本项目产生的下脚料全部由炼钢厂回收进行综合利用;焊渣由生产厂家回收利用;废切削液属于HW09类危险废物,危废代码900-006-09,委托有资质单位处理;废液压油属于HW08类危险废物,危废代码900-218-08,委托有资质单位处理;废瓦楞纸和废过滤棉中含有吸附的漆渣属于《国家危险废弃物名录》中WH12染料、涂料废弃物,废物代码(264-013-12),交由有相关资质的单位回收;废油性漆和稀释剂桶属于《国家危险废弃物名录》中WH12染料、涂料废弃物,废物代码(264-013-11),交由有相关资质的单位回收;废活性炭属于HW49(废物代码900-041-49),交由有资质单位处理;废水性漆桶属于一般废物,由厂家回收利用;废催化剂由生产厂家回收利用;脱脂除锈废液属于HW17表面处理废物(废物代码336-064-17),交由有资质单位处理;废石英砂过滤器属于HW49危险废物(废物代码900-041-49),交由有资质单位处理;废废活性炭过滤器属于HW49危险废物(废物代码900-041-49),交由有资质单位处理;废废活性炭过滤器属于HW49危险废物(废物代码900-041-49),交由有资质单位处理;污泥属于HW12危险废物(废物代码900-252-12),交由有资质单位处理;污泥属于HW12危险废物(废物代码900-252-12),交由有资质单位处理;生活垃圾全部由环卫部门外运后统一处理,不长期堆存,形不成二次污染。

综上所述,山东江华机械制造有限公司在建设过程中,环保审批手续齐全。仪器设备定期维护,人员熟练操作各生产设备和环保设备;该项目废气采取有效措施

后能够实现高效控制, 废气达标排放		国
	(, /久 /\^/ \/ \	四
厂界噪声达标,满足验收条件。		

附表 1: 建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章): 山东江华机械制造有限公司

填表人(签字):

项目经办人(签字):

	项目名称				山东	江华机械制造有限公	公司		建设地点		单县经济开发区南	樊路以南,东环路以东		
	行业类别				C2110 木制农业机械制	1造		建设性质	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
	设计生产!	 能 <i>力</i>			年产 2 万台农业机	械	实际生成能力		年产 2 万台农业机械		环评单位	菏泽泰诺环境	菏泽泰诺环境科技有限公司	
	环评文件'	审批机关		:	菏泽市生态环境局巨野	分局	审批文号		单行审投【2020】154 号		环评文件类型	环境影响	 句报告表	
建	开工日期				2020. 3		竣工日期		2020. 6		排污许可证申领时	间	/	
设一	环保设施	设计单位		!	山东江华机械制造有限	公司	环保设施施工单位		山东江华机械制造有限公司		本工程排污许可证	編号	/	
万 目	验收单位				山东江华机械制造有限	見公司 (1)	环保设施监测单位		山东圆衡检测科技有限公司		验收监测时工况	,	/	
	投资总概	算 (万元)	56000					环保投资总概算(万元)		370		所占比例(%)	0.	66
	实际总投	资 (万元)			50000		实际环保投资 (万元)		383		所占比例(%)	0.	0.77	
	废水治理	(万元)		废气治理(万元)		噪声治理(万元)		固废治理(万元)		绿化及生态(万元)	/	其他(万元)	,	/
	新增废水	处理设施能力					新增废气处理设施能力					年平均工作时	24	2400
	运营单位		山东江华机械制造有限公司			运营单位社会统一信用代码(或组织机构代码)			913717000659150255		验收时间			
污	\- \st at.		原有排放量	本期工程实际排	本期工程允许排放	本期工程产生量	本期工程自身	本期工程实际排	本期工程核定	本期工程"以新带	全厂实际排	全厂核定排放总	区域平衡替代消减量	排放增减量
染	污染物		(1)	放浓度 (2)	浓度 (3)	(4)	消减量 (5)	放量 (6)	排放总量 (7)	老"消减量(8)	放总量 (9)	量(10)	(11)	(12)
物	废水													
排	化学需氧:	量												
放	氨氮													
达	石油类													
标	废气													
与	二氧化硫					0. 014								+0.014
总	烟尘					0. 441								+0.441
量	工业粉尘													
控	氮氧化物					0. 430								+0.430
制	工业固体	废物												
(工	│ │ 项目相	挥发性有机物				0. 956								+0. 956
业建 设项	关的其 _													
及坝 目详	它污染													
填)	物													

注: 1、排放增减量: (+)表示增加, (-)表示减少。 2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1)。 3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升; 大气污染物排放浓度——毫克/立方米; 水污染物排放量——吨/年; 大气污染物排放量——吨/年。

单县行政审批服务局

单行审投 [2020] 154号

关于山东江华机械制造有限公司年产2万台农 业机械项目环境影响报告表的 批复意见

山东江华机械制造有限公司:

你公司《山东江华机械制造有限公司年产 2 万台农业机械项 目环境影响报告表》收悉,经研究,提出以下批复意见:

一、该项目属改扩建项目。你公司拟投资 56000 万元,其中环保投资 370 万元,在单县经济开发区南樊路以南、东环路以东建设山东江华机械制造有限公司年产 2 万台农业机械项目,占地面积 133333 平方米,建筑面积 68000 平方米;该项目不含酸洗除锈、磷化工艺;该项目喷塑采用自动静电粉末涂装工艺,粉末塑粉使用量为 5.5/a;喷漆工艺水性漆使用量为 6.23t/a、油性漆(含稀释剂)使用量为 5.85t/a。主要建设内容主体工程包括 1#生产车间(机加工工序) 2#生产车间(切割下料工序) 3#生产车间(焊接涂装工序), 4#生产车间(利用西侧一部分作

为装配车间),喷漆流水线(底漆间、底漆烤漆间、面漆间、面漆烤漆间)、喷罐流水线;公用工程包括办公楼、宿舍楼、事故水池;环保工程包括废水、废气、噪声、固废治理等工程;项目已在山东省投资项目在线审批监管平台备案,项目代码:2018-371722-35-03-046306号。原山东江华机械制造有限公司年产1万台农业机械项目经单县环境保护局批复。因项目在建设过程中生产车间、生产规模及内容需发生变化,重新报批环境影响评价手缘。该项目在落实报告表中提出的污染防治措施后,应该能够满足环境保护的要求,从环境保护角度同意该项目建设。

- 二、该项目在设计。建设和运营中应落实环评报告表和本批 复的要求。
- 1、该项目应严格按照"雨、污分流"的原则合理设计、建设项目区排水系统。该项目废水主要是生活污水、清洗废水(脱脂和陶化后清洗废水)。清洗废水收集后经厂区自建污水处理规模为 5m³/d,污水处理工艺为"均和池+化学处理沉淀池+气浮池+过滤装置+活性炭吸附装置+pH调节池"处理后同经化费池处理后的生活污水,污水水质满足《污水排入城镇下水道水质标准》(GB-T31962-2015)表 1 中 B 等级标准及单县污水处理厂进水水质要求后经城市污水管网进入单县第三污水处理厂进行处理。应对化粪池、管渠、喷漆车间、危废暂存场所、污水处理站、脱脂槽、陶化池等做好防渗措施、不得对地下水产生污染。

- 2"-

按规范要求设置污水排放口。

2、该项目新上1台130万大卡和1台100万大卡燃气燃烧机用于喷塑固化工序,1台50万大卡燃气燃烧机和1台100万大卡燃气燃烧机用于烤漆工序,2台25万大卡燃气燃烧机和1台50万大卡燃气燃烧机用于烤漆工序,2台25万大卡燃气燃烧机和1台50万大卡燃气燃烧机用于表面处理预脱脂及水分烘干工序。据建设项目环境影响报告表结论本项目大气污染物主要是激光、等离子切割工序产生的切割烟尘;焊接工序产生的焊接烟尘、打磨工序产生的金属打磨粉尘;抛丸除锈工序产生的粉尘;喷塑工序产生的粉尘;天然气燃烧机塑粉固化工序产生的粉尘;喷塑工序产生的粉尘;天然气燃烧机塑粉固化工序产生的有机废气和天然气燃烧废气;表面处理预脱脂及水分烘干废气;喷漆、调漆、流平及天然气燃烧机烘干工序产生的漆雾、有机废气、甲苯、二甲苯和天然气燃烧废气。

焊接及打磨工序产生的烟尘及粉尘分别经采取在焊接工位 上方进行收集,收集后通过中央集尘系统经处理效率达到 99%

-3-

以上的脉冲袭式除尘装置进行处理,处理后须满足《山东省区域性大气污染物综合排放标准》(DB37/2376-2019)表1 "重点控制区"的排放浓度限值颗粒物(10mg/m³)要求及排放速率满足《大气污染物综合排放标准》(GB16297-1996)表2相关要求后经15米高P2排气简排放。

抛丸工序产生的粉尘经采取在分离器后进行收集,收集后分别经处理效率达到99%的脉冲袋式除尘器进行处理,处理后须满足《山东省区域性大气污染物综合排放标准》中表2 "重点区域"排放标准(颗粒物最高允许排放浓度10mg/m³)及排放速率满足《大气污染物综合排放标准》(GB16297-1996)表2中标准要求后经15米高P3排气筒排放。

喷塑工序在封闭的喷粉室内进行,产生的粉尘通过喷粉室负压系统将未吸附在工件表面的粉尘引入处理效率达到 99.5%以上的脉冲式滤芯+布袋除尘器进行处理,处理后外排粉尘浓度须满足《山东省区域性大气污染物综合排放标准要求后通过15米高P4排气筒排放。固化工序在高温固化炉烘道内进行,产生的有机废气应在烘道进出口上方设置集气罩进行收集,收集后由处理效率达到 90%以上的"低温等离子+活性炭吸附设备"进行处理,处理后有组织 VOCs 有机废气排放浓度须满足《山东省挥发性有机物排放标准——第5部分:表面涂装行业》

(DB37/2801.5-2018)表 2 中 "专用设备制造业"标准及排放速度满足《大气污染物综合排放标准》(GB16297-1996)表 2 中要求后通过 15 米高 P5 排气簡排放。

该项目喷漆、流平、调漆、烤漆工序全部在密闭的喷漆及烤漆房内进行,喷漆、调漆及流平、烤漆工序产生的 VOCs、甲苯、二甲苯、漆雾废气收集后通过处理效率达到 90%以上的 "经瓦楞纸+过滤棉+活性炭吸附浓缩+催化燃烧装置"进行处理,处理后颗粒物须满足《山东省区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 中 "重点控制区"的排放浓度限值(颗粒物 10 mg/m³)及 VOCs、二甲苯、甲苯排放满足山东省《挥发性有机物排放标准——第5部分:表面涂装行业》(DB37/2801.5-2018)表 2 中 "专用设备制造业"标准(即VOCs 最高允许排放速率≤2.4 kg/h、最高允许排放浓度70mg/m³)要求后经15 米高 P7 排气简排放。

1台130万大卡和1台100万大卡燃气燃烧机用于喷塑固化工序、1台50万大卡燃气燃烧机和1台100万大卡燃气燃烧机用于烤漆工序、2台25万大卡燃气燃烧机和1台50万大卡燃气燃烧机用于表面处理预脱脂及水分烘干工序的燃气燃烧机分别采取低氮燃烧后产生的SO2、NOx颗粒物外排浓度须满足《山东省锅炉大气污染物排放标准》(DB37/2374-2018)中表2中"重点控制区"排放标准 烟尘 10mg/m³,5O2,50mg/m³)

及《菏泽市落实<京津冀及周边地区 2019-2020 年秋冬季大气 污染综合治理攻坚行动方案>实施方案》(菏政办发[2019]19号) 要求燃气锅炉低氮改造后氮氧化物排放浓度不高于 50mg/m³ 要求、排放速率满足《大气污染物综合排放标准》 (GB16297-1996)表 2 中排放速率要求后分别通过 15 米高 P5、P6、P7 排气简排放。

应加强烟尘、粉尘、VOCs、甲苯、二甲苯等废气的收集效率,减少无组织的排放,厂界无组织颗粒物浓度须满足《大气污染物综合排放标准》(GB16297-1996)无组织排放浓度监控限值(≤1.0mg/m³)标准要求;VOCs、二甲苯、甲苯厂界浓度须满足《山东省挥发性有机物排放标准——第5部分:表面涂装行业》(DB37/2801.5-2018)表3中无组织厂界标准(即VOCs无组织厂界浓度限值2.0mg/m³、甲苯无组织厂界浓度限值0.2mg/m³、可甲苯无组织厂界浓度限值0.2mg/m³、项目运营后如有于环评结论和本批复不符情形的应对大气进行环境影响后评价并报我局审批。据环境影响报告表结论,该项目卫生防护距离为2#生产车间设置50m卫生防护距离,3#生产车间设置100m卫生防护距离,据山东鑫地博工程管理有限公司测绘,项目生产车间距最近的敏感点小张庄村为162.63米,项目实施能够满足企业卫生防护距离要求。你公司应配合县规划部门、山东单县经济开发区管理委员会和单县东城办事处做好该范围内

用地规划控制,禁止规划、建设住宅、学校、医院等环境敏感建筑物。各有组织排放源须按规范要求设置永久性采样、监测孔及 采样平台。

菏泽市生态环境局单县分局已对该项目主要污染物调剂了总量控制指标。SO2排放指标0.536t/a、NOx排放指标0.752t/a、颗粒物排放指标0.5638t/a、VOCs挥发性有机物排放指标0.1932t/a。

- 3、选择低噪声设备,对主要噪声源采取降噪、隔声和对设备维护等措施。厂界噪声应符合《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求。
- 4、本项目固废主要是产生的下脚料收集后外售炼钢厂回收利用;废切削液、废液压油、废瓦楞纸、废过滤棉、废油性添和稀释剂桶、废活性炭、废脱脂液、废石英砂过滤器、废废活性炭过滤器、污泥、废陶化液属危险废物,分类收集后交由有该危险废物处理资质的单位进行处理;废水性漆桶收集后交由厂家回收利用;废催化剂收集后交由生产厂家回收利用或同化粪池污泥、生活垃圾收集后交环卫部门统一处理,均不得随意堆放均不得对环境形成二次污染。一般固体废物和危险废物处置须满足《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001) 修改单、《危险废物贮存污染控制标准》(GB18597-2001) 及其修改单及《危险废物贮存污染控制标准》(GB18597-2001) 及其修改单及《危险废物贮存污染控制、GB18597-2001) 及其修改单及《危险废物贮存污染控制、GB18597-2001) 及其修改单、《危险废物贮存污染控制、GB18597-2001) 及其修改单、《危险废物贮存污染控制、GB18597-2001) 及其修改单、GB18597-2001) 及其形式。GB18597-2001) 及其修改单、GB18597-2001) 及其修改单、GB18597-2001) 及其修改单、GB18597-2001) 及其修改单、GB18597-2001) 及其使成成的成品。GB18597-2001) 及其核处理成成的成品。GB18597-2001) 及其核处理成成的成品。GB18597-2001) 及其核处理成品。GB18597-2001) 及其核性成品。GB18597-2001) 及其核性成品。GB18597-2001) 及其核处理成品。GB18597-2001) 及其核性成品。GB18597-2001) 如于核性成品。GB18597-2001) 及其核性成品。GB18597-2001) 如于核性成品。GB18597-2001) 如于核性成品。GB

验废物污染防治技术政策》其修改单要求进行贮存、运输、处置。

- 5、该项目利用厂区现有闲置厂房用于项目建设,无土建工程对周围环境影响较小。
- 三、项目建设必须严格执行配套建设的环境保护设施与主体工程同时设计、同时施工。同时投入使用的"三同时"制度。 并严格落实菏泽市环保局"十个一"工程中有关要求。低温等离子装置须安装用电计量装置。项目建成后按照新的《建设项目环境保护管理条例》及《建设项目竣工环境保护验收暂行办法》国环规环评【2017】4号的要求,组织竣工环境保护验收。经验收合格后,该项目方可正式投入生产。

四、本项目的项目性质、规模、地点及生产工艺发生重大变 化和五年后项目方开工建设的应重新进行环境影响评价并按规 定程序报批。

五、单县东城环保所做好项目建设及运营期间的环境保护监督管理工作。 县危险废物和辐射管理站应配合单县东城环保所做好一般固废和危险废物的储存,运输、和处置工作。

单县行政审批服务局 2020年06月10日

食事長人

- 8 -

测 报 告

Test Report

項目名称: 直气, 底水和吸声检测

委托单位: 山东江华机械制造有限公司

根告日期: 2020 年 07 月 18 日

山市黑洲松南科铁柱阳公司

地址市市省特许市社分区电机校(黄河特与亚司格里美口) ——Bintall shjoje90(但167-1000

电话/0530-3382689/17861713333

L基本信息表

委托单位		b东江华机械制造有限公	pr
单位地址		山东省岸泽市华县	
联系人	1	联系电话	15391919041
检测类组	委托拉朗	秤品來加	現场架样
化等编型		C0711A	
	有组织进气。商权告、VOC	(NMHC) 。甲苯、二甲	学、氨氧化物、二氧化银
松級明日	无能别废气。颗粒物、VOC	(NMHC)。伊莱、二甲	樂
201401-2012	庚水: pH值、悬浮物、COD	o、BODr、製菓、複化物	。
	NE ph		
聚代目期		3020.07.11-2020.07.12	
经利用期		2020.07.11-2020.07.17	
菜种方法依因	《固定污染器律气中颗粒物》 《固定解撰飞临辩技术规范》 《大气污染物综合排放标准》 《污水边测技术规范》(1419	(H3/T 397-2007) (G816297-1996) (F/Sk)	
菲拜及检测人 员	马心记。密新师、李俊超。图 阅闻、朱朝亨、郑明郎、王孝	中、高英、李常贺。 小	X载、王红杰、田希法。

明明、徐静如 明明、电影查 80%、超好

山东國實检辦科技有限公司

2020年07月18日 (加盛報告专用章)

爾(西弗22 五

2.检测信息

采样点位	检测项目	果料箱次
#推、街口檢鑽口	既推進物	检测 2 天, 3 快天
26进、出口检测口	類較物	检新2天,3次/天
建建、出口检测口(2进1出)	#(14):30	检测2天,3次天
4年出口税第二	MIRS of	检测2天。3次天
5年出口整洲自	颗粒物、复氧化物、二氧化碳	他而2天,3次/天
6#出口检验口	80,42,410	检测2天,3次/天
7#出口检测口	服務的	松湖2天,3次天
BW出口拉翘口	额较物、重氧化物、二氧化硫	物牌2天,3次天
総造、出口检測口(6進1出)	VOCs (NMHC) 。甲苯、二甲苯	检测 2 天。3 以/天
生产炭水处理群、后	pH 他、是評物、COD _D 、BOD ₃ 、 复製、氟化物、阴离子表面居性和、 锌	检测2天。4次/天
厂界上风向设1个参照点 厂界下风向设3个结按点	類段物。VOCi (NMHC) 、甲苯。 二甲苯	检察2天。4次天
厂界四闸	鳞鱼	拉那2天。 件。 我问各170

3.检测分析方法(1)

校准	1項目	校期分析方法	税器集捐	方法检出限 或最低检出软度
		有组织		
80	拉勒	固定污染翻排气中颗粒物测定与气态污染 物场样方法(及径改单) 重量法	GB/T 16357-1996	1.
101	22h	假定污染擦脱气 低浓度解粒物的概定 推量法	HJ 836-2017	1.0eng/m³
VOC: (NMHC)	固定污染细度气 总经、伊纳和非甲烷总烃 的测定 气相色谱法	HJ 38-2617	0.67mg/m ⁺
二甲 苯	対個 二甲 来	間定污染原皮气 探发性有机物的洞定 直 相吸附-热股耐/气相色谱-展谱法	HJ 734-2014	0.009mg/m*
	和二 甲苯	固定污染颜度气 将发性有机物的测定 周相吸附:热膜时/气相色谱-坝塘怯	HS 734-2014	0.004mg/m²
· P	*	国宣污染源质气 挥发性有机物的游定 路相领附-热脱剧/气相色谱-新谱法	HJ 734-2014	0.004mg/m*

第2页共22页

3.检测分析方法(2)

检测项目	检测分析方法	拉斯依例	方法检出限成最低检出效果
二氧化液	固定污染源炭气 二氧化硫的测定 紫外吸收法	DB37/T 2705-2015	2mg/m ³
放乳化物	固定污染腐废气 侧氧化物的测定 量外吸收法	DB37/T 2764-2015	2mg/m ³
	无组织		
W(4216	环境空气 总量浮颖按特的测定 重量进(及维改单)	GB/T 15432-1995	0.001mg/m ³
VOCs(NMHC)	环璞空气 总烃。甲烷和非甲烷总烃的测定 直接进桿-气料色谱法	HI 604-2017	0.87mg/m²
	炭水		
рн 91	水质 pH 性的辩定 玻璃电极法	GB/T 6920-1986	7
BOD _f	水橋 五日生化常氣量 (BOD ₁) 的避定 務終与接种法	141 505-2009	0.5mg/L
CODo	水层 化学带笔量的测定 重铬酸盐法	HJ 828-2017	4mp1.
处浮物	水坑 悬浮物的测定 重量法	GB/T 11901-1989	4mg/L
201,511	水质 复氯的黄尼 纳氏试剂分光光度法	HJ 535-2009	0.025mg/L
所海子表面語 性利	水质 開离子表面活性别的測定 亚甲基分光光度法	GB/T 7494-1987	0.05mg/L
17.	水质 铜、锌、铅、辐的测定 原子收收分光光度法	GB/T 7475-1987	0.05mg/L
氧化物	水质光机附离子 (P. Cr. NO ₂ , Br. NO ₂ , PO ₂ , SO ₂ , SO ₂) 的制定 离子色谱法	HJ 84-2016	J. gm500.0
	吸 测		
极声	噪声仪分析法	GB 12348-2008	- 00

第3月共22月

4.采样及检测仪器

項目	仅器名称	仅据设备进号	仪器设备编号
	俚挑式气象参数校署仪	MH7100	YH(J)-05-156
	全自助大气/颗粒物采样器	MH1200	YH(J)-05-151
	全自动大气器权物采样器	MH1200	YH(J)-05-152
	全自动大气/顆粒物采样器	MH1200	YB(J)-05-153
	全自动大气/颠映物采样器	MH1200	YH(J)-05-154
	污染源水空循闭杆器	MH3051 型	YH(J)-05-131
	污染即真空指采杆器	MH3051 51	YH(J)-05-132
	大气 VOC 采样静	MH1200-E	YH(I)-05-119
见 场采样,检测设备	大气 VOC 采样酱	MH1200-E	YH(J)-05-120
	大气 VOC 采样器	MH1200-E	YH(J)-05-121
	大气 VOC 采样器	MH1200-E	YH(J)-05-122
	紫外烟气分析仪	MH3200	YH(I)-05-161
	全自动缉尘(气)测试仪	YQ3000-D	YH(J)-05-147
	全自动组会(气)器试仪	YQ3000-C	Y11(F)-05-080
	全自动爆生(气)源域仪	YQ3000-C	YH(F)-05-148
	污染版 VOC 采件器	MH3050	YH(J)-05-125
	唯声分析仪	AWA5688	YH(J)-05-135
	海神分析天平	AUW120D	YH(J)-07-059
	恒温恒温非重系统	PT-PM2.5	YH(Z)-07-183
	气相色谱-低谱联用仪	GCMS-QP2010SE	YH(7)-05-087
	离子色谱仪	IC-8628	YH(f)-04-033
	数度计	рня-эс	YH(J)-02-009
实验室分析仪器	电子分析天平	FA2964B	YH(3)-07-060
	用子吸收分光光度计	TAS-990AFG	YH(I)-04-032
	气相色谱仪	GC-2014	VH(3)-04-171
	徵式資定管	25mL	YH(J)-01-101
	殺式者定赞	50mL	YH(J)-01-102
	生化培养箱	SHX-15000	YH(I)-03-017

图 4 所 共 27 页

5.无组织废气检测结果

采样日期	103KGK 61		松测洁果	(mg/m ³)	
MATERIAL .	1276-1711	In LUNE	2#下风间	3#下风向	4# FJ8,#
		0.175	0.342	0.342	0.251
2020 07 11	MINN NA	0.187	0.264	0.323	0.271
2020.07.11	BEH295	0.193	0.375	0.353	0.286
		0.577	0.356	0.251	9.277
		0.179	0.336	0.366	0.394
2020.07.12	MELEC ON	0.187	6.373	0.254	0.376
2020/07/12	8062.42	0.195	0.216	0.391	0.393
		0.182	0.378	0.432	0.285
		0.86	1.18	1.12	1.29
20205-027-1	TROC - (SERBICA)	0.91	1.16	1.10	135
2020,07.11	VOCs (NMHC)	0.95	1.19	1.25	1.25
		0.86	1.34	1.15	137
		0.80	(3,33	31.123	1,25
2020 07 12	Vere (same	0.96	1.38	1.16	123
2020,07.12	YOCs (NMHC)	0.96	1.11	1.38	130
		0.94	1.04	1.37	1.15
		0.0726	0.0401	0.0464	0.0424
2020.07.11	101.70	0.0405	0.0467	0.0438	0.0482
2020.07.11	甲苯	0.0314	0.0422	0.0417	0.0428
		0.0213	0,0368	0.0347	0.0383
		0.0324	0,0529	0.0424	0.0420
5050 07 15	pri-w-	0.0213	0.0323	0.0345	0.0272
2020.07.12	中業	6.0304	6.0419	0.0426	0.0425
		0.0214	0.0333	0.0356	0.0387

第 5 原 共 22 页

5.无组织废气检测结果(2)

TO AM CT MIT	to aware to		松烈焰果	(mg/m³)	
派鲜.任期	检照项目	1#上共列	24下河南	3#下风(0)	4WFERIN
		0.0174	0.0216	0.0203	0,0203
200000000000000000000000000000000000000	二甲基	0.0156	0.0198	0.0235	0.0304
2928.07.11		0.0257	0.0318	0.0478	0.0403
		0.0196	0.0319	0.0216	0.0558
		0:0263	0.0476	0.0397	0.0391
2020.07.12	- 100 00	0.0206	0.0382	0.0219	0.0233
2020/07/12	二甲苯	0.0308	0.0476	0.0508	0.0414
		0.0224	0.0322	0.0361	0.0332

备注:本项目概控物参考《大气污染物综合非效标准》(GB 16297-1996)表 2 无组织度积点数值 (1.0mg/m³);

本項目 VOCs (NMHC)、二甲苯、甲苯浓度参考 (样发性有机物种放标准-第5部分:表面论装行业) (DB 37/2801.5-2018) 表 3 元即和语控点限值 (VOCs (NMHC) ≤2.timg/m²。甲苯≤0.2mg/m²,二甲苯≤0.2mg/m²)。

6.气象条件参数

检测日期	Aritt comi	*(H. (kPa)	7438 (m/o)	JAJA	信云量	是安县
EE11112190	生活 (90)	COL SEPRE	SAME ARROY	Jacob L.	110.24.780	お外車
	25.6	99.9	2.5	5	4	9.
2626 57 11	28.9	99.7	:2.3:	S	. N	.9
2020.07.11	29.9	99.6	2.3	S	5	36
	26,7	99.8	2.4	5	14	9
	21,6	100.2	2.5	5	4	9
2020 07 12	22,1	99.9	2.4	- 5	4	И
2020.07.12	22.9	99.9	2.4	8	30	8
	21.8	100.1	2.3	8	2	9

(本页以下空白)

第 4 頁 共 22 頁

7.噪声检测结果

日期	(0.65	处列東市值 Legid	B(A)) 提前	聯西信 Leq[dB(A)
	14:517784	54.8		46.4
2020 02 11	28.4t./ YE	55,2		45.6
2020,07.11	3#207 95	55.5		46.0
	44411.1	55,1		46.3
	1世年厂员	54.4		46.2
2020.07.12	2年化厂外	54.7		45.8
2020.07.12	3#207 39	55.7		45.6
	##附厂群	55.3		46.1
0:57	長 蚕	65		55
日期	e	ing .		机间
19.000	天气状况	中担风港 (m/s)	天气状处	平均风速 (m/s)
2020.07.11	\$27	2.4	多花	2.6
2020.07.12	#25	2.6	\$27	2,7

(本页以下空白)

第 丁 班 共 22 班

ВР. УНДОЛИКИН

8.有组织废气检测结果(1)

報告は報	が非体質	_		(Pathala) 出版技事	Semigraps 3			19,00,19,11	年以(4g) 単(4g/h)	
			-	Ti	ĸ	特殊	-	61		が
	11681	製物器	4	49	2	45	0.588	0.622	0.604	0.605
	松瀬口	finesistin (Naivh)	H353	14471	14373	14399	×	E	,	*
	1480	MANN	1.5	61	27	85	0.0229	0.0292	91100	0.0279
	が強い	(A)	19293	15367	15005	15242	-	36	8	>
11, 22,000,000	#90.00 (36.)	自然物	243	140		-	1,96	95,3	876	95.4
and a second	2470 CT	和位的	弄	25	4	25	0.524	0,534	0.557	0.538
	な無口	新改造 (Surve)	13778	13684	13516	13683	: *:		œ	::=:
	2eHIT	神の間	2,4	1.7	22	Ä	0.0348	0.0394	0.0336	0.0353
	位置に	45公司[祖 (Sm/h))	(450)	14600	14354	14488	17.		-	-
	等代数件	BRESS	1	3	-		93.4	92.6	113	93.4

斯多世界四月

\$6. YICHOIMEN

8.有组织度气栓测结果(2)

						10.00	Trumper S.			
東田開	米乔克拉	(KARNIE		排放推提 (mg/m²)	(mgm)			特別選挙	排放速率(kgh)	
			*	2	1	物值	100	ea	en):	均值
	型型型	開放機	7	30	12	æ	0.597	6376	0.477	0.548
	口美佐	63830 (Nov. to)	14569	14628	16651	14549	-	3	`	~
	11/2/41	MIRES SIX	277	61	971	17	0.0261	0.0293	0.0243	97070
	位別口	SSERRE (Newhb)	15326	15423	15180	15310	8	7.	>	-
Principal and	か位後年 (35)	製物物	Ω.	30	100	12	9'56	676	676	1.20
	は無い	が可能	37	Ŧ	36	80	0.513	9850	0.491	0,523
	松瀬口	和汉元氏(NmYh)	13863	13746	13648	13732	10		4	9
	2446.0	man	2.1	2.6	2.5	3.4	90000	0.0384	0,0362	0,0351
	口服業	新花路里 (Narth)	14645	14752	14499	14632	÷		7	-
	净化条件 (%)	現な場	=	13		~	94.9	45.2	92.6	93.3

考《大气闪染物综合指核标准》(GRITIA297-1996)表2中二组络取得率(J.Skgh)。

用9位件22号

8.有组织废气检测结果(3)

MEG: VERIGINALITY

						01	松田田田			
WHEN.	素件点位	H H DECK CH		(mgm) 国家協会	(mgm)			4位法4	c (kg/h)	
			-	R	s tr :	排配	(1)	œ	55	粉件
	四部港	Meloth	22	24	11	24	0.138	0.127	0,141	0,129
	松雅口	(Nm/m)	5350	5308	5224	5234	3	30	5	
	3.000	類核物	34	310	32	33	0.186	0.10	0.1189	0.181
2020,07.11	位置の	MARKER (New Ye)	5468	2436	5407	5437	S.	*	*	20
	3480	開発制	- 52	3.2	333	3.4	0.0380	R1450'0	0.0386	0.0371
	口服会	新花花纸 (Navh)	11165	10887	11020	11024	9	ŝ		15.52
	#R280# (%)	1812111	1	2	17	2	87.5	88.2	52	88.0

备注:本項目驅放物作故來度參考(近域性人气污染物指合身效标准)(DB 37/2376-2019)表1所占拉特区标准跟值(開始物: 10mg/m²)及排放追率参考《大气污染物经合作故标表》(GB/T1629-1996)表2中二級任款追率(1.3kg/h²)。

MAN, YHZOGIARDIN

8.有组织废气检测结果(4)

						100	OF THE SE			
案件日期	知识的位	整個項目		情說說(U Congress)	Congress			件放進率 (AgA)	COMPAN.	
			-	PI.	-	報報	#	ere:	1923	日本
	34841	施設物	¥	π	×	20	01140	9144	0.127	0.137
	司龍型	(6/8/20/E) (Mm/lb.)	5360	5336	3280	5328	3.	8		7.
	7.1	動物物	Ħ	H	35	36	0.168	0.202	0.188	0.186
202007.12		(SEE (North)	5404	5425	1768	5410	8	35	का	30
	жфп	MARCH	3.6	3.8	3.4	9.0	0.0411	0.0424	0,0384	0.0406
	工業學	研究推進 CNm5%3	8/2411	11157	11286	11290	3	ġ.		-
	7PR2908 (%)	Meth	(%)	14.5	3	o.	9798	27.78	87.8	87.4

备注:本項目顧你物非從來產参考《医域性大气污染物能合体核析律》(DB 272376-2019)後1重点取解区移作製值(關稅物: 10mg/m²)及将遊進率参考《大气污染物络含非弦乐池》(GB 716297-1996)表2寸二緒样放進率(3.5kg也)。

MET, YRENGINGER

8. 有组织胶气检测结果(6)

4.63×10* 条件: 本规目解释物、二氧化离、氯氧化物拌匙的度多考加未省《民域性人"记录物综合排放标准》(DB272276-2019)表 1 中"重点控制区"的排萃液度 制度(二氧化版 songim?、氯氧化物 100mg/m²,脂核性 10mg/m²)。 6.08×101 0.176 提收 0.182 3.41×10° 633+107 5.22×10³ 622=101 0.176 0.185 排放送率 (kgh) m -4.28×10* 6.18×10³ 5.59×10+ 4,13×10° 0.170 0.174 ė. --3,72 × 10-4 4.73×10° 4.52×103 0.183 0.187 -불 (四款計) (新算折) 2 m 芙 -Ħ 88 -位制件系 9 2.5 2 rts. jei. 3 = 4 97 E 2 F 50 19 8 -S -装 m RM; **特松外双** 71 58 F 2 88 911 n, 世代 17 NA 73.5 3477 100 1 2 6.9 2 8 -6.1 排放部度 (mg/m²) (吳湖) 3435 2488 4 9 17.7 72.1 57 77 ÷ 8 2378 2432 Ħ 71.7 576 0.0 t-3 53 9 86 re 瓷 2488 2512 333 94.6 100 2 S Ÿ 6.2 99 × 8 氣合類 (%) (水) 提及第 放制项目 其化指 氧化素 格器 (PC) 复氧化物 (3C) William 紫紫化物 8010.46 (Nm/h) (Newlyk) \$160.10 SP出口 表面口 56出口 存置口 素権 発展 2000. 2020. 07.12

題に京れた改成

GET: VICIOSIMALINI

8.有组织废气检测结果 (7)

日期 点粒	特別项目		株林((mg/m²)		(編成)	李俊	你供養因(Hgh)(所養品)	(July	の選手		新田の田田	特技選集 (ba/h)	
		-						1000					
		-	7	13	都留	5	ř4.	itti	拉供	2	ri	.00	格性
	数な数	V	Ñ	V		~		-	~	-	-	-	
	一年代報	Ÿ	7	0	ú	100	1	2	1	2	,	8	2
00 00 00 00 00	加氧化物	₹*	₹	₹	~	~		-			-	7	-
口順得 1170	(40 集合業)	20,7	20.7	20,7	20.7	3	*	17	~	O.	1	1/	2
	(Nm/h)	# 65	30931	51210	\$1195			9	-	0,0	8	9	7
	観視でも	£	*	×	2	-	-	-5	140	19	-	1	-
	W14546	V.	V	Ÿ	1/2	1	1	=	-		-	. ~	-
	二氧化碳	V	Ų	Ü		1	-	3		10		1	8
2020. 89/LETZ	1000年	V	₹	♡	7.	>	3	3	-	1	12	8	-
	2 女合展(%)	70	30.7	7,0%	707		Cin.	4	12	1	-	-	-
	(New(ft.)	51623	51360	50865	51283	~	1	-	-	3	-		-
	(元) 嬰	Þ	14	111	37	1	0	-	1	1/1	s	2	

W-P. YRDHOTMODE

8.有组织废气检测结果(6)

						10 H	位而姑娘			
の日本の	公司等	日の場合		作政政(E (mpm ²)	(ratifie)			併位地帯 (kgh)	(kgh)	
WILL HAM	Anti-tunia	The state of the s		6	9	排標	3	71	7	お推
		VOCs (NMIEC)	14.9	12.3	14.2	13.9	0.0511	0.0425	0.0493	0.0476
	8×10 1	操步	0.243	0.141	0.174	0.186	833×104	4.79×10+	6.04=10+	6.38×10+
	17年7日	製計!	0.366	0.382	0.411	0.386	1.254104	130×10 ⁻³	1,43×10°	133×10 ³
		(sing 20) (New 15.)	3427	3398	3469	3433	186	7.5	- 23	15
		VOCs (NMBC)	17.7	162	14.0	563	0.154	0.141	00,130	0.142
	W#17.2	年条	0.005	0.007	0.012	800'0	434×101	6319109	1.04>10+	01×96/9
	位数型	横直丁	0.730	0.119	895.0	0.339	634×10?	2,78×10²	4,94×107	4,69×10*
		(875年年(Nm/h))	9898	8723	8698	8702	-38:	20	26	16
2009/07.11		VOCa (NMHC)	19,4	17.8	17.0	183	0.166	6.154	0.146	0.156
	に日井田	表色	0.010	01010	6.014	0.011	8.58×10*	8.66×30*	1.20×10*	9.76×10
	松瀬口	禁止に	0.299	0.135	0.266	0.233	2.56×10 ⁻²	1.174/103	2,29+101	2.01×10+
		修改選集 (Nm2h)	#S77	8658	8594	8610	1.00	8	0	1
		VOX3 (NMHC)	15.7	13.6	18,0	15.8	6750.0	60503	0.0863	0.0581
	東口張器	桥田	6.013	1300	0.020	0.015	4,775/10*	4,07×10*	7.36×10*	5,40×10*
	位置型	岩 型11	661'0	0.117	901.0	0,140	7,30×10*	4.33×10*	3,835/10*	5.15×10*
		(安定政策 (Nm/h)	3669.	3702	3610	3684	(3)	38	-	5

器化低角拉瓦

集场形式过渡

Assertance of	STREET, SOUND	BASKIELE.		排放的限	Cemahn!3			(AMA) 東京(MA))	CANAD.	
#U##	W.77 P.14.20.	111111111111111111111111111111111111111	-	-3	9	報報	-	7	*	如
		VOCs (NMBC)	18.1	10.3	17.3	111.2	0.271	0.290	0.258	0.273
	841411.5	**	0,070	0,032	0.068	0.057	1.05×10 ¹³	4,81×10*	1,02×10*	8.49×10
	の開口	無由二	6,65	\$,53	7,42	6.53	7000.0	0.4831	0.111	0.0990
		标记证据 (Nm/h)	14986	15027	14977	14997			-	-
		VOCs (MRRC)	18.8	15.5	6.83	17.7	0.164	0.135	0.165	0.155
	8eill:15	4	0.011	0,007	0.00K	0.009	9,60×10*	6.09×10°	6.97×10*	3.55×110*
	位置口	※ 金二	0,412	0.290	0.306	0,336	3,60×10*	2.52×10°	2.67<10*	2.93×104
3030.07.11		(SRM) (Nm/h)	87279	8698	8714	8713			,	-
		VOCs (NMHC)	7.90	6.64	173	7.26	900'0	0.338	0.370	0.372
	SWIHITT	析士	6,020	6,013	0.019	710,0	1.03×10*	6.62×10**	9.73+10*	8.88×10*
	D MA	※出!	0.85.1	1.25	*!!	100	0.9454	0.9632	40,0584	4,4557
		AGREE (New/fb)	51444	16605	\$1210	51155	1	1		*
	1000000	VOCs (NMHC)	1.	- 22	345	30	63.0	58.4	34.5	58.3
	計算が	長士	32	10.	-383	346	52.3	45.3.	31.1	49.5
	(4)	発売	2	77	(3/)	- 35	60.3	30.8	52.5	47.8

编号, YERSCHATH 统上表

- 94 -

48.5, YHDRONKEZH

8.有组织废气检测结果 (7)

						10.20	位置出限			
が時日間	のな事が	- KSBIDEN		(中放成性 (mp/m²)	(mpm)			供抗进率 (kg/h)	(kgh)	
WITH HA	WILLIAM TO THE PARTY OF THE PAR	10000000	-	7		Helli	=	m	m	特殊
		VOCs CMBED	13.4	17.3	15.3	15.3	0.0165	0.0502	0.0535	0.0528
	口共和	井田	0.151	0.201	0.297	6.216	5244104	6,77=10+	1.040/10#	7,474,10*
	を掘口	京山二	0.331	0.341	6.382	0.351	1.15×10.1	1.135(10+	130/104	1,21=10*
		(Wanta) (Nm/h)	3472	3366	3498	3445	10	25	16	1
		VOCs (NMHC)	17.0	18.0	16.6	17.2	0.147	0.157	0.144	0.149
	2000年17	株型	0.003	0.008	0.011	90000	4339/10-5	636×10 ⁻¹	9.57+10*	6.95×10 ⁴
	1000	発表「	0.645	0.324	0.475	0.483	\$594107	2.52×10*	4,13×10°	4.18×10²
		(ALRA) (Narda)	8667	8698	8702	6898	976	16	200	77
2020.07.12		VOCs (NMBC)	0.61	16.4	14.7	36.7	0,163	0.142	0.126	0.144
	Kerth Cl. 1	新田	0.010	1100	0.013	0.011	8.58×10-3	9,50×10*	1.12×10*	9,75×10*
	口原母	茶曲	0.295	0.136	0.255	6229	2,53×10²	1.17<10*	2.19×10+	1.97×10 ⁻⁷
		格名政策 (Nm/h)	8380	NG32	9658	8803	3	777	ß.	-
		VOCs (NABIC)	4.81	15.8	13.7	16.0	0,0673	18500	0.0505	0,0586
	8.600 11.4	**	0.014	0.011	0.020	0.015	5,12×10.4	4,05×10 ⁻⁵	738004	\$ 51H(0)
	口製品	機田川	0.200	0.116	0,131	0,151	153×10 ⁴	427×104	4.83×10*	5.34×10*
		(Navida)	3657	3678	3689	3675	38	1	,	

第17年第22条

编号: YHDMG196EBB 续上表

文作日期 末幹立位 88様ロ5	44,000,000		- 2.0 Jan 14- 140	200000000000000000000000000000000000000		A CANADA STATE OF THE PARTY OF	※ 門 報報	(1000) 新光線能	
	1000000		14.0XAP.M.	特級海瓜 (mg/m²)			SEGRADA	The State of the S	
8 口戀感	- Inches	-	3	1	お推	-		r	15100
5 口掛器	VOCs (NMHC)	16.9	202	18.8	9.83	0.254	0.303	0.281	0.279
		0,065	0.033	0.068	0.055	9.77×10 ⁻⁴	4.65×10*	1,02×10+	8.20×10 ⁴
口解型	一日	3.94	521	530	5702	0.0893	0,6781	0.0868	0.0847
	fyziki (Navita)	13026	14986	14943	14992	,		-	
	VOCs (NMBC)	17.7	142	13.9	15.3	0.155	0.124	0.123	0.133
9.口拼像	接去	0,612	0.007	0,007	6000	1.05×10+	6.09×10*	6.11×10°	736×10*
17.00	粉子	0.266	0.239	0.291	0.279	2339103	2,43×10 ³	2.54=10*	2.43=10*
2000007.13	标说简牒 (Nm/h)	3745	8703	8722	8734	1			*
	VOCs (NMHC)	8.93	7.65	*53	× 28	0.460	6.193	0.421	0.425
HAHEE	操士	0.020	4,015	6100	6.017	1.03×10-1	6,68>10+	9.66×10 [±]	8.89×10*
な雑口		0,893	1.05	61.19	1941	0.0461	0.0539	0.0560	0.0530
	标记清量(Nm2h)	51623	91360	\$9805	\$1283	1	- 1		2
1000000	VOCs (NMHC)	9	7.7	9	(8)	***	53.3	45.8	48,0
中央政策	米世	7	. 7	117	988	42.2	52.5	59.7	\$1.5
NO.	桜当川	3	7	2	100	54.6	37.3	42.6	44.9
卷注: 本质目 VOC. (NMHC)。 - 19 条,甲非甲基氨氨基 (研究统有用格定数条件-等多等分,表面设施行程)(DB 37, 2801-5-2018)数 2 程(NAMES) - Calendaria - 日本 (Streethal)	ABC)。「日本株・甲井田田本の「田本の」「日本	非抗抗災害馬 <15mm(III ¹)	(群次性有用)	発生改革用-1 18 (VOC)	第5部分: 使 NAMIC1 <2	(建汉佐有用路径按案件-第5部分: 我面接指行近) ,社長選集第8 (VOX: (NMHC) 624446. 形案:	(DB 37/2801	(DB 37/2801.5-2018.) 数2程值 (VOCs (8.3kul), 二甲苯50.8kml)。	和值 (VOC.)

属体组件存出线

#4, versomme

9.废水检测结果 (1)

得当代の			311 000 000 00	CKININGE					ALM MINE	Actions			
A(Cthrough)	1,92	1.83	1.90	1.86	1.83	090'0	0,054	0.047	0,042	0.051	97.3	30	
WongLi	990	29'0	0.68	0.69	0.60	<0.05	<0.05	<0.05	<0.05		-	200	
MX F表 militari (mgf.)	0.64	0.66	0.62	0.62	190	<0.05	<0.05	<0.05	<0.05		*	39	
\$1.50 (mg/L)	6.93	9.94	10.1	10.0	6.50	\$11.0	6,135	0.131	0.126	0.127	98.7	4.5	
CODE (mg/L)	2.384107	2.76×10³	2.70×10³	2.78×10 ⁴	2.77×10	80	13	£	- 08	. 0%	57.3	900	
BODs (mg/L)	813	821	H27	834 834	158	23.6	24.4	25.3	26.0	24.8	97.0	330	
M7755	Q.	40	5	4	ij.	-0	+	. Nes	:0	in:	75	400	
pB 低 (天皇田)	8.69	958	8.54	8.63	-	8.42	978	8.47	153	×	N.	6.5-9.5	
MX	-	N	m	4	100	=	61	e	4	斯線			
報告			11年11日本					生产表大			北陸教件(%)	新年	
元						2020.07,11					華		

器砂果品担果

W.F. YHONGIBUZIII

9. 废水检测结果 (2)

籽品状态 五色原語 先价值胜 Mifety (mg/L) 0.060 0.057 0.049 0.048 0.048 1 061 1.76 1.82 0.054 1.84 174 20 (Hugh) <0.05 <0.05 ALPS ALPS <0.05 99.0 0.68 69.0 0.68 990 5 95 **西海干米** 田路体施 (1/2m) <.0.05 <0.05 <0.05 4970 0.64 2970 0.67 9970 R --18,19, (mg/L) 0.142 0.148 0.131 0.140 103 63 10.8 10.5 10.4 48.7 * 备注,原水排放浓度参考(污水排入城镇下水道水质标准)(GB/T31962-2015)B 等级标准建设。 2.70×10⁷ 2,76×301 2,775/107 2,620/107 2,73×107 CODs, (reg/L) 17.5 28 17 产 2 1 33 BOD, (mg/L) 245 127 824 8 833 Ē 253 25.0 26.7 26.0 6.99 350 是序的 (mg/L) 84.2 90 Ç. 50 8 9 \$ ř-P= φ. ac. Pr. AH (位 63.93 8.72 8.30 8.76 8.52 8.40 8.56 3.57 E 第次 Hardi. 世界 75 r) + 7 Ŧ. * -111 生产版水 处理器 生产原水 北部教権(元) 多等段值 製造 2020.07.12 生 至

新物品并拉其

附表: 固定污染源排气筒参数表

排气链膜号	得气质高度 (m)	排气简内较 (m)		
1#10年(初	15	0.70		
20排气箱	15	0.70		
3#排气筒	15	1.2500.40		
46597576	15	0.50		
56样作的	1.5	0.40		
6州第四大門	15	0.40		
7##第个七四	15	0.40		
*##*CM	20	1.40		

(本页以下空白)

第21 复共22 页

附倒:厂区平面布置及布点示意图

第22页共22页

检验检测机构 资质认定证书

证书编号:171512114891

名称: 山东圆衡检测科技有限公司

地址: 北京省侨泽市位于区农机技(角市逐年昆用是交叉目)(274000)

經安查,你机构已具备国家有关法律、行政法规规定的基本条件和能力。既予状准、可以向社会由具具有证明作用的数 据和结果、样发共证、普及认定包括检验检测机构计量认证。

许可使用标志

171512114891

发证日期: 2017年09月22日

有效用至: 3/3

旁证机关

丰富书由描审从证认可位着管理委员会监狱,在中华人民共和国流内有效;

委托书

山东圆衡检测科技有限公司:

根据环保相关部门的要求和规定,我公司 <u>年产2万台农业机械项目</u>,需要进行检测,特委托贵单位承担此次验收检测工作,编制检测报告,请尽快组织实施。

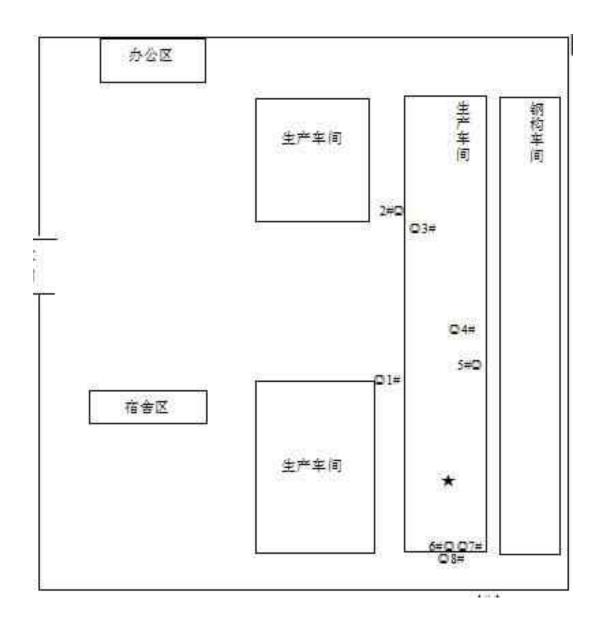
委托方: 山东江华机械制造有限公司

日期: 2020年6月20日

附件6: 无上访证明

无上访证明

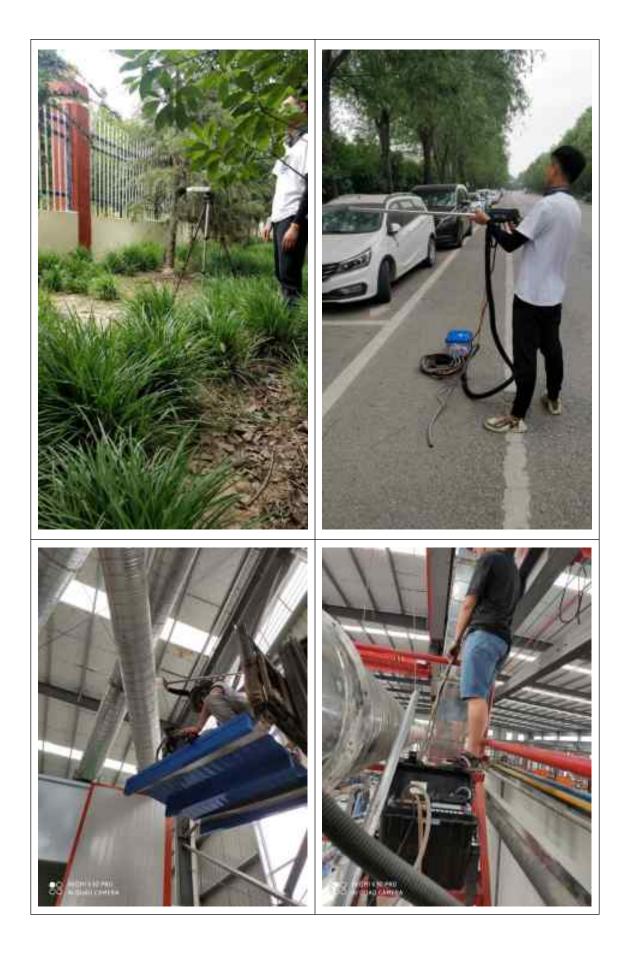
我单位自建厂以来,严格遵守国家各项法律法规,认真落实各项环保政策,安全生产。从未上访及发生过环保违规事件。


特此证明。

公司名称:山东江华机械制造有限公司 2020年6月22日

附图 1: 项目地理位置图

附图2: 平面布置图



附图3:检测图片

第二部分

山东江华机械制造有限公司年产2万台农业机械项目 竣工环境保护验收意见

山东江华机械制造有限公司年产2万台农业机械项目 竣工环境保护验收意见

二〇二〇年八月二日,山东江华机械制造有限公司在菏泽市单县组织召开了山东江华机械制造有限公司沙发农业机械生产竣工环境保护验收会议。验收工作组由山东江华机械制造有限公司、验收检测单位山东圆衡检测科技有限公司等单位代表和3名专业技术专家组成(验收工作组人员名单附后)。

验收工作组现场检查了有关环境保护设施的建设和运行情况, 听取 了山东江华机械制造有限公司对项目环境保护执行情况的介绍和山东圆 衡检测科技有限公司对该项目竣工环境保护验收检测的汇报, 审阅并核 实了相关资料。经认真讨论, 形成验收意见如下:

一、工程建设基本情况

(一)建设地点、规模、主要建设内容

该项目位于单县经济开发区南樊路以南,东环路以东,项目总投资 50000万元,主要设备为精密锯、砂光机、台钻、立卧钻、螺杆气泵、吊 镂、地镂等设备,以原木为原料,年产2万台农业机械,主要建设内容 包括生产车间、废气处理设备等。

(二) 环保审批情况

菏泽泰诺环境科技有限公司于 2020 年 06 月编制了《山东江华机械制造有限公司年产 2 万台农业机械项目环境影响报告表》,并于 2020 年 6 月通过单县行政审批局审查批复(单行审投【2020】154 号)。

受山东江华机械制造有限公司委托,山东圆衡检测科技有限公司于 2019年05月对本项目进行现场勘察,查阅相关技术资料,并在此基础上 编制本项目竣工环境保护验收监测方案。于2020年07月11日和07月 12日连续两天进行验收监测。

(三)投资情况

项目总投资 50000 万元, 其中环保投资 383 万元, 占总投资的 0.77%。

(四)验收范围

山东江华机械制造有限公司年产 2 万台农业机械项目主体和配套工程及环保实施和措施。本次验收不包含喷塑生产线。

(五) 卫生防护距离

经现场查勘,卫生防护距离100米内无环境敏感目标。

二、工程变动情况

该项目环评中激光、等离子切割工序产生的烟尘分别采取切割平台烟尘收集装置进行收集,收集后经处理效率达到99%以上的滤筒式烟尘净化器进行处理后通过15米高空排放;打磨工序产生的烟尘及粉尘分别经采取在产尘上方进行收集,收集后通过中央集尘系统经处理效率达到99%以上的脉冲袋式除尘装置进行处理后通过15m高排气筒高空排放。实际建设为激光、等离子切割工序产生的烟尘分别采取切割平台烟尘收集装置进行收集后,无组织排放;前期打磨工序通过打磨柜自带的除尘设备处理后通过15m高排气筒高空排放,漆面打磨通过两套滤芯除尘器进行处理后经15米高P6、P7排气筒排放;该项目其他建设情况与环评落实情况基本一致,建设过程中较环评不存在重大变动。项目与环评批复落实情况基本一致。

三、环境保护设施建设情况

(一) 废水

项目营运期的废水主要为表面处理清洗废水和职工生活污水。

本项目清洗废水主要污染物为 COD、BOD、SS、Zr+、F+、表面活性剂等,本项目清洗废水经均和池、化学处理沉淀池、气浮池、过滤装置、

活性炭吸附装置、pH 调节池处理后, 经市政污水管网排入单县第三污水 处理厂深度处理。

项目员工生活产生的生活污水经化粪池预处理后,经市政污水管网排入单县第三污水处理厂进行处理。

(二) 废气

本项目废气主要有激光、等离子切割过程产生的切割烟尘;焊接过程中产生的焊接烟尘和打磨过程中产生的金属打磨粉尘;抛丸除锈过程中产生的粉尘;表面处理预脱脂及水分烘干废气;喷漆前打磨粉尘;调漆、喷漆、烤漆废气;烤漆房燃烧废气等。

本项目切割产生的粉尘通过切割机自带除尘设备进行处理,处理后 废气无组织排放。

焊接废气采用中央集尘+脉冲滤筒除尘器进行除尘,处理后处理后废气由 15m 排气筒 (P2-P4) 排放。打磨废气采用中央集尘+脉冲滤筒除尘器进行除尘,处理后处理后废气由 15m 排气筒 (P6) 排放

本项目抛丸除锈过程产生的粉尘通过引风管进行收集,收集后采用脉冲袋式除尘器进行除尘,处理后废气由15m排气筒(P1)排放。

本项目表面处理预脱脂及水分烘干废气采用低氮燃烧器,废气经一根 15m 高排气筒 (P5) 排放。

本项目喷漆前打磨通过打磨柜自带除尘器处理后通过一根 15m 排气筒 (P7) 排放。

本项目喷漆和烤漆废气经过瓦楞纸+过滤棉吸收+活性炭吸附浓缩+催化燃烧装置进行处理,处理后通过一根 15m 排气筒(P8)排放。

本项目烤漆房燃烧机采用低氮燃烧器,产生的废气与喷漆烤漆废气 一起经由同一根 15 米高排气筒 (P8) 排放。

(三)噪声

项目噪声主要为精密锯、砂光机、台钻、立卧钻产生的机械噪声, 对高噪声设备进行集中布置、加装消音、隔音装置, 降低噪声。

(四) 固废

本项目产生的生产边角料、除尘器收尘、废砂纸、废过滤棉、水性漆渣漆屑、废水性漆桶收集后外售;生活垃圾环卫部门外运统一处置;废灯管、废光触媒棉、废活性炭 分别收集后委托有资质单位处置。

项目产生的固体废物得到妥善处置和综合利用后,满足《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及修改单和《危险废物贮存污染控制标准》(GB18597-2001)及修改单要求,对项目区周围的环境产生影响较小。

(五)该企业设有环保管理人员。

四、环境保护设施调试效果

验收监测期间,企业生产负荷达80%以上。

(一) 污染物达标排放情况

1、废水: 经检测,厂区废水 PH 值在 8.42-8.57 之间,COD 排放浓度最大值 83mg/L、BOD 排放浓度最大值 26.7mg/L、SS 排放浓度最大值 8mg/L、Zr+低于检测值、氟化物排放浓度最大值 0.057mg/L、表面活性剂低于检测值、氨氮排放浓度最大值 0.148mg/L,满足《污水排入城镇下水道水质标准》(GB/T 31962-2015)B等级标准,经市政污水管网排入单县第三污水处理厂深度处理。

2、废气:

1#排气筒颗粒物排放浓度最大值为 2.1mg/m³, 排放速率为 0.0316kg/h, 处理效率为 94.8-96.1%, 2#排气筒颗粒物排放浓度最大值为 2.7 mg/m³, 排放速率为 0.0394kg/h, 处理效率为 92.6-94.3%, 3#排气

筒颗粒物排放浓度最大值为 3.8mg/m³, 排放速率为 0.0424kg/h, 处理效率为 86.6-88.3%, 4#排气筒颗粒物排放浓度最大值为 2.7mg/m³, 排放速率为 0.00.0160kg/h, 6#排气筒颗粒物排放浓度最大值为 2.6mg/m³, 排放速率为 0.0285kg/h, 7#排气筒颗粒物排放浓度最大值为 3.4mg/m³, 排放速率为 0.0424kg/h, 能满足山东省《区域性大气污染物综合排放标准》(DB37/2376-2019)表 1 "重点控制区"的排放浓度限值颗粒物(10mg/m³)和《大气污染物综合排放标准》(GB16297-1996)表 2 中颗粒物排放速率(3.5kg/h)要求。

5# 排气筒颗粒物排放浓度最大值为 $2.5 mg/m^3$,排放速率为 $5.22 \times 10^{-3} kg/h$, SO_2 排放浓度最大值为 $3 mg/m^3$,排放速率为 $6.33 \times 10^{-3} kg/h$, NOx 排放浓度最大值为 $88 mg/m^3$,排放速率为 0.187 kg/h, 8#排气筒 SO_2 、颗粒物、NOx 的排放浓度低于检测线,满足山东省《锅炉大气污染物综合排放标准》(DB37/2374-2018)表 2 "重点控制区"排放标准($SO_250 mg/m^3$ 、颗粒物 $10 mg/m^3$ 、 $NO_x100 mg/m^3$)要求。

8#排气筒有组织 VOCs 排放浓度最大值为 8.91mg/m³, 排放速率为 0.460kg/h, 处理效率为 44.8-53.3%, 甲苯排放浓度最大值为 0.02mg/m³, 排放速率为 1.03×10 $^{-3}$ kg/h, 处理效率为 42.2-59.7%, 二甲苯排放浓度最大值为 1.24mg/m³, 排放速率为 0.0632kg/h, 处理效率为 30.8-60.2%, 满足山东省《挥发性有机物排放标准——第 5 部分:表面涂装行业》 (DB37/2801.5-2018)表 2 中"专用设备制造业"标准和表 3 中无组织厂界标准,即 VOCs 最高允许排放速率 \leq 2.4 kg/h、最高允许排放浓度 70mg/m³。甲苯最高允许排放速率 \leq 0.2 kg/h、最高允许排放浓度 5mg/m³。

二甲苯最高允许排放速率≤0.8kg/h、最高允许排放浓度 15mg/m³。

本项目无组织颗粒物最大落地浓度为 0. 432 mg/m³,排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中无组织颗粒物排放小于 1. 0mg/m³;生产车间无组织 VOCs、无组织二甲苯、无组织甲苯最大落地浓度分别为 1. 38mg/m³、0. 0529mg/m³、0. 0508mg/m³,均满足山东省《挥发性有机物排放标准——第 5 部分:表面涂装行业》(DB37/2801. 5-2018)表 3 中无组织厂界标准,VOCs 无组织厂界浓度限值 2. 0mg/m³、甲苯无组织厂界浓度限值 0. 2mg/m³、二甲苯最最高允许排放浓度 0. 2mg/m³。

- 3、噪声: 经监测,厂界环境昼间最大噪声值 56dB(A),夜间最大噪声值为 48.8dB(A),满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类标准要求。
- 4、固体废物:本项目产生的下脚料全部由炼钢厂回收进行综合利用; 焊渣由生产厂家回收利用;废切削液、废液压油、废瓦楞纸和废过滤棉、 废活性炭、涂料废弃物、废油性漆和稀释剂桶、脱脂除锈废、废陶化液 液、废石英砂过滤器、废活性炭过滤器、污泥属于危险废弃物,交由有 相关资质的单位回收;废水性漆桶属于一般废物,生活垃圾全部由环卫 部门外运后统一处理,不长期堆存,形不成二次污染。

五、工程建设对环境的影响

按要求建设了相应的污染防治设施,经对废气、噪声监测达到验收执行标准,固废得到了有效处置,对环境安全。

六、验收结论

该项目环保手续齐全,基本落实了环评批复中的各项环保要求,经检测污染物均能达标排放,各项验收资料齐全,基本符合《建设项目竣

工环境保护验收暂行办法》(国环规环评[2017]4号)的有关规定,在完成后续要求的前提下,同意验收合格。

建设单位应配合检测和竣工验收报告编制单位,认真落实"后续要求"并形成书面报告备查。

建设单位应当通过环保部网站或其他便于公众知晓的方式,向社会公开信息。

七、后续要求与建议

(一)建设单位

- 1、规范有组织排放的采样孔、永久性监测平台和环保设施及排气口标识。
- 2、进一步完善企业环境保护管理制度、完善环保设备和危废出入库记录等各种环保台帐、操作规程、运行记录、检修、停运、自主监测计划等。
 - 3、规范危废暂存间,做好危废间及污水池防渗措施。
 - (二)验收检测和验收报告编制单位

1规范竣工环境保护验收监测报告文本、图片、附件,补充完善建设项目工程竣工环境保护"三同时"验收登记表。

八、验收人员信息见附件。

山东江华机械制造有限公司

二〇二〇年八月二日

《山东江华机械制造有限公司年产2万台农业机械项目(一期)》

竣工环境保护验收人员信息表

类 别	姓名	单 位	职务/职称	签 字
项目建设单位	刘卓	山东江华机械制造有限公司	经理	母女
专业技术专家	刘文信	山东省菏泽生态环境监测中心	- 高级工程师	3736
	李瑛	山东省菏泽生态环境监测中心	高级工程师	在沒
	王文全	菏泽市生态环境局鄄城分局	注册环保、环评工程师	323
检测单位	徐静茹	山东圆衡检测科技有限公司	技术员	结静如

第三部分 其他需要说明事项

附件1:

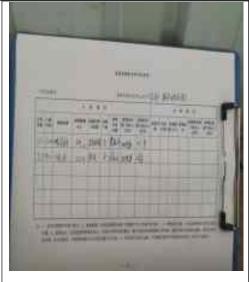
整改说明

2020年08月02日,我公司在菏泽单县组织召开年产2万台农业机械项目竣工环境保护验收会。验收工作组现场检查了有关环境保护设施的建设和运行情况,审阅并核实相关资料后,对我司不足之处提出了宝贵意见,我公司领导高度重视,立即召开专题会议,分析原因并结合实际情况落实整改,现将整改情况汇报如下:

整改意见

整改情况

1、规范有组织排放 的采样孔、永久性 监测平台和环保设 施及排气口标识。 已规范有组织排放的采样孔、永久性监测平台和环保设施及排气口标识



已进一步完善企业环境保护管理制度、完善环保设备和危废出入库记录等各种环保台帐、操作规程、运行记录、检修、停运、自主监测计划等。

3、规范危废暂存 间,做好危废间及 污水池防渗措施。

企业已规范危废暂存间,做好危废间及污水池防渗措施。

附件 2: 网上公示信息网址及截图

http://www.sdyhjckj.com/news/shownews.php?lang=cn&id=1189

绿水青山鱼金山锯山

(图 PE D) 共命运 比我们一起可护他们

利以展览 3 第四個名 3 個數公司

双户服务

关于 山东江华机械制造有限公司 年产2万台农业机械项目 环保设置偏域公示

理整公历

見料下側,

图图 图象

多问题函数

1.关于更纯意识

木业資限公司。年

严5万立方米多层

北極中产进且計

2.关于山东接路

两年使进物符事

任公明 单国教育

用20万時建筑过

设建设焊直环保

1.关于简厚物社

理点ない生

伊祉が公子

关于由朱江华机械制造有限公司

年产生万分公主机械项目

环保设编调或公示

关于一山东江华机械申随有限公司年产2万台农业机械项目建于单县经济开发它向樊路以南,东环路以东。建设过程中投资环识以及单行率投位0001194号文件的报关要求进行。 型套环信贷额全部赚款。

機關國家环保稅2017年11月20日发佈的《建设项目校工环境保护验收整行办法》(國环批环保(2017)012号)。多项目整理建设的环境保护设施校工后。对多项目整理建设的 针错像种及输进行通讯前。在公开通试的贴让日期。因此,我公司对"山东工事机械制造有限公司年产2万台农业机械项目"作出以下公示。

一, 开保设施,排试起止日期

1、环保竞励通过起止日期: 计加通通时展期限为2000年20月15日——2020年20月14日。 曲式期间整括有皮板的始制机构开展工程设工部保险收益期隔离工作。并在公示期间间 **内冥城坡项母的施工船款。**

二、公公常助偶應的方式和關係

公众可以在继关信赖公开后。以电子健伴。信用方式均量设单位否带。

三-建设单位联系方式

建设单位: 山东江华机械制造有限公司

議讯地址: 单县经计开发区南线据以第: 东环循以东

2020-06-15 17/46:19 山东調道性類科技有限公司 規模5

蘇斯人: 任妨理

联系电话: 18353070788

丹区医白菜白育 商公宪年产10万

电子却隔:

http://www.sdyhjckj.com/news/shownews.php?lang=cn&id=1206